© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author: jgarcia4408@utm.edu.ec
Keywords:
Sensory analysis
Meat
Rabbit
Hylocereus undatus
Texture prole
Rabbit meat burgers with pitahaya peel powder: Functional, physicochemical and sensory
analysis
Hamburguesas de carne de conejo con polvo de cáscara de pitahaya: Análisis funcional, sicoquímico
y sensorial
Hambúrgueres de carne de coelho com pó de casca de pitaiaiás: Análise funcional, físico-química e
sensorial
Marcia Ruth Benavides-Gonzalez
1
Rocío Monserrate Zambrano-Zambrano
1
Jordan Javier García-Mendoza
1,2*
Lila Magaly Avellán-Avellán
1,3
José Patricio Muñoz-Murillo
1,2
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n4.X
Food technology
Associate editor: Dra. Gretty R. Ettiene Rojas
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela.
1
Departamento de Procesos Agroindustriales, Facultad de
Agrociencias, Universidad Técnica de Manabí, Chone,
Ecuador.
2
Grupo de Investigación “Industrialización de Productos y
Subproductos Agroindustriales”, Facultad de Agrociencias,
Universidad Técnica de Manabí, Chone, Ecuador.
3
Grupo de Investigación “Manejo y Agroindustrialización
de Productos Agropecuarios”, Facultad de Agrociencias,
Universidad Técnica de Manabí, Chone, Ecuador.
Received: 23-08-2025
Accepted: 25-10-2025
Published: 19-11-2025
Abstract
Nowadays, it is necessary to seek alternative agroindustrial
uses of fruit residues, as these are sources of bioactive compounds
important for human nutrition. The objective of this study was
to evaluate the eect of pitahaya peel powder on the functional,
physicochemical, and sensory acceptability properties of rabbit meat
burgers. Five formulations of rabbit burger meat with pitahaya peel
powder (3, 5, 7, and 9 %) and a control formulation were established
under a completely randomized experimental design with a factorial
arrangement. In the processed products, functional properties
(anthocyanin content, antioxidant activity (DPPH and ABTS) and
total phenols), physicochemical properties (pigmentation of the
ether extract, protein, fat, ber, ash, moisture and total solids),
textural and colorimetric characteristics (hardness, cohesiveness,
adhesiveness, gumminess and color), microbiological properties
(mesophilic aerobes, Escherichia coli, Staphylococcus aureus and
Salmonella) and sensory attributes (avor, aroma, color and texture)
were determined. The treatment with the best physicochemical and
functional properties was T4 (9 % ppp) whose values were: fat (2.48
%); ber (3.86 %); a* (23.06); b* (3.47), anthocyanins (+++), DPPH
(23.667 µmol trolox equivalent.g
-1
), ABTS (30.353 µmol trolox
equivalent.g
-1
), total phenols (19.706 mg gallic acid equivalent.g
-1
);
pigmentation (0.113), hardness (4.552 N), adhesiveness (-0.855 N)
and gumminess (2.128 N). All treatments met the physicochemical
and microbiological requirements established in the Ecuadorian
standard NTE INEN 1338.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253 October-December. ISSN 2477-9409.
2-6 |
Resumen
En la actualidad es necesario buscar alternativas de
aprovechamiento agroindustrial de los residuos frutícolas, debido a
que estos son fuentes de compuestos bioactivos de importancia en la
alimentación humana. El objetivo de este estudio fue evaluar el efecto
del polvo de cáscara de pitahaya sobre las propiedades funcionales,
sicoquímicas y aceptabilidad sensorial de hamburguesas de
carne de conejo. Se establecieron cinco formulaciones de carne de
hamburguesas de conejo con polvo de cáscara de pitahaya (3, 5, 7
y 9 %) y una formulación control, bajo un diseño experimental
completamente al azar con arreglo factorial. En los productos
elaborados, se determinaron propiedades funcionales (contenido
de antocianinas, actividad antioxidante (DPPH y ABTS) y fenoles
totales), sicoquímicas (pigmentación del extracto etéreo, proteína,
grasa, bra, cenizas, humedad y sólidos totales), características de
textura y colorimetría (dureza, cohesividad, adhesividad, gomosidad
y color), microbiológicas (aerobios mesólos, Escherichia coli,
Staphylococcus aureus y Salmonella) y los atributos sensoriales
(sabor, aroma, color y textura). El tratamiento con mejores propiedades
sicoquímicas y funcionales fue el T4 (9 % ppp) cuyos valores fueron:
grasa (2,48 %); bra (3,86 %); a* (23,06); b* (3,47), antocianinas
(+++), DPPH (23,667 µmol trolox equivalente.g
-1
), ABTS (30,353
µmol trolox equivalente.g
-1
), fenoles totales (19,706 mg ácido gálico
equivalente.g
-1
); pigmentación (0,113), dureza (4,552 N), adhesividad
(-0,855 N) y gomosidad (2,128 N). Todos los tratamientos cumplieron
con los requisitos sicoquímicos y microbiológicos establecidos en la
norma ecuatoriana NTE INEN 1338.
Palabras clave: análisis sensorial, carne, conejo, Hylocereus undatus,
perl de textura.
Resumo
Atualmente, faz-se necessário buscar usos agroindustriais
alternativos dos resíduos de frutas, visto que estes são fontes de
compostos bioativos importantes para a nutrição humana. O objetivo
deste estudo foi avaliar o efeito do pó da casca de pitaiaiás nas
propriedades de aceitabilidade funcional, físico-química e sensorial
de hambúrgueres de carne de coelho. Cinco formulações de carne
de hambúrguer de coelho com da casca de pitaiaiás (3, 5, 7 e 9
%) e uma formulação controle foram estabelecidas em delineamento
experimental inteiramente casualizado com arranjo fatorial.
Nos produtos processados, foram determinadas as propriedades
funcionais (teor de antocianinas, atividade antioxidante (DPPH e
ABTS) e fenóis totais), propriedades físico-químicas (pigmentação
do extrato etéreo, proteína, gordura, bra, cinzas, umidade e sólidos
totais), características texturais e colorimétricas (dureza, coesividade,
adesividade, gomosidade e cor), propriedades microbiológicas
(aeróbios mesólos, Escherichia coli, Staphylococcus aureus e
Salmonella) e atributos sensoriais (sabor, aroma, cor e textura). O
tratamento com melhores propriedades físico-químicas e funcionais
foi o T4 (9 % ppp) cujos valores foram: gordura (2,48 %); bra (3,86
%); a* (23,06); b* (3,47), antocianinas (+++), DPPH (23,667 µmol
equivalente trolox.g
-1
), ABTS (30,353 µmol equivalente trolox.g
-1
),
fenóis totais (19,706 mg equivalente ácido gálico.g
-1
); pigmentação
(0,113), dureza (4,552 N), adesividade (-0,855 N) e gomosidade
(2,128 N). Todos os tratamentos atenderam aos requisitos físico-
químicos e microbiológicos estabelecidos na norma equatoriana NTE
INEN 1338.
Palavras-chave: Análise sensorial, carne, coelho, Hylocereus
undatus, perl de textura.
Introduction
Rabbit meat (Oryctolagus cuniculus) stands out for its unique
nutritional compounds, being a lean meat, low in fat, rich in minerals,
vitamins (especially B vitamins: B1, B2, B12) and proteins (Aquino-
López et al., 2020). It diers from other meats in organoleptic aspects
such as avour, aroma and tenderness (Herrera-Stanziola et al.,
2023). Rabbit meat is recommended for people with high protein
requirements or a sensitive digestive system. In addition, it is highly
versatile in the food industry for the production of various meat
products (González Balmaceda et al., 2023).
Rabbit meat in products such as ham and sausages has been shown
to generate a yield comparable to that of other species. Rabbit meat
formulations with honey as an antioxidant have also been developed
(López-Velasco et al., 2021), as well as sausages with chontaduro
powder (Bactris gasipaes) and reformed corn starch extenders
(Hleap-Zapata et al., 2014), achieving improvements in preservation
and increased nutritional properties.
In Ecuador, 90 % of Manabí pitahaya is exported (Flores and
García, 2016). Furthermore, only the edible part of the fruit, which
represents about 55 % of its total weight, is used. This is used to
make foods such as frozen pulp, concentrates, juices and jams,
while the remaining 45 % is discarded in landlls, causing potential
environmental pollution problems. Currently, it is used as fodder and
in the extraction of natural pigments; however, alternatives for its
use in the meat industry should be sought due to its high antioxidant
content (Cervantes-Sánchez et al., 2017).
Pitahaya peel is a good source of bioactive compounds, such as
phenolics, and also contains soluble and insoluble bre, betalains
and other volatile compounds (Lin et al., 2021). Currently, a variety
of polyphenolic compounds have been described in the peel of
red pitahaya fruits, including acids such as gallic, protocatechuic,
vanillic, caeic, syringic, p-coumaric acid, isorhamnetin triglycoside,
and quercetin-3-O-rutinoside, among others (Tang et al., 2021).
In this context, by-products from fruit processing industries are a
rich source of antioxidant compounds with protective or preventive
properties against human diseases (Echegaray et al., 2018). On the
other hand, consumers of easy-to-prepare meat products demand
hamburger meat with sensory, functional, nutritional, and healthy
qualities for their consumption (Cantarero-Aparicio et al., 2022). In
light of the above, this study evaluated the eect of pitahaya peel
powder on the functional and physicochemical properties and sensory
acceptability of rabbit meat burgers.
Materials and methods
Location of the trial
The experimental work was carried out at the Laboratorio de
Procesos Agroindustriales, Facultad de Agrociencias, Universidad
Técnica de Manabí, Chone, Ecuador.
Raw materials
Pitahaya fruit peel (Hylocereus undatus) was used, supplied by
Hacienda El Okaso, located in the Rocafuerte district. The carcass of
a New Zealand White rabbit was purchased in the rabbit production
area located in the city of Santo Domingo de los T’sáchilas. The other
ingredients (eggs, salt, cumin, pepper, garlic powder, breadcrumbs,
sunower oil) needed to make the hamburger patties were purchased
at the GRAN AKÍ supermarket in the canton of Chone, province of
Manabí, Ecuador.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Benavides-Gonzalez et al Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252
3-6 |
Konica Minolta CR-410FF colourimeter with printer (CIELab scale).
The parameters considered were: lightness (L*), saturation (a*) and
hue (b*).
Microbiological analysis
The following microbiological parameters were evaluated:
mesophilic aerobes CFU.g
-1
(NTE INEN 1529-5), Escherichia coli
CFU.g
-1
(AOAC 991.14), Staphylococcus aureus CFU.g
-1
(NTE
INEN 1529-14) and Salmonella 1/25 g (NTE INEN 1529-15).
Sensory analysis
The rabbit meat hamburger treatments made with pitahaya peel
powder were evaluated organoleptically through sensory analysis.
Seventy untrained tasters participated in the analysis. The samples
were cooked in sunower oil at a temperature of 170 °C for 6 minutes
(3 minutes per side), then left to cool for 30 minutes at 28 °C. The
rabbit burger patties were then chopped up and given to the tasters in
random order, along with a hedonic test of sensory acceptability on
a 7-point scale (1 = I dislike it very much 7 = I like it very much).
The tasters immediately determined the degree of acceptance of the
following sensory attributes: avour, aroma, colour and texture of the
processed product.
Experimental design and statistical analysis
A completely randomised experimental design with a factorial
arrangement was used, with ve treatments including a control and
three replicates per treatment, giving a total of 15 experimental
units. The factor under study was the concentrations of pitahaya peel
powder (3, 5, 7 and 9 %).
Minitab 18 statistical processing software was used. Analysis of
variance and Dunnett’s test at 5 % signicance and 95 % condence
were used for the functional and physicochemical prole data.
Non-parametric analysis of variance and Kruskal Wallis test at 5 %
signicance and 95 % condence were used for the sensory data. The
results were presented as mean ± standard deviation.
Results and discussion
Functional and physicochemical prole analysis
The results of the analysis of variance and comparison of means
according to Dunnett are detailed in table 2. The anthocyanin results
were interpreted according to the following assessment: - (nil); +
(moderate); ++ (notable) and +++ (total change).
Preparation of rabbit meat burgers
Before preparing the burgers, pitahaya (Hylocereus undatus) shell
powder was obtained using the methodology proposed by Muñoz-
Murillo et al. (2024).
The rabbit carcass was selected based on organoleptic parameters
compatible with a quality product: bright pink colour, rm texture
and characteristic smell, with no signs of decomposition. Standard
cuts were then made, measuring approximately 7 cm wide by 9 cm
long. The pieces were washed with drinking water to remove surface
blood residues. Finally, the cuts were vacuum-packed in food-grade
polyethylene bags and frozen at a temperature of -2 °C for 24 hours in
order to preserve their physicochemical and microbiological stability
prior to processing.
The rabbit meat was minced using an industrial mincer with 7 mm
discs, then the meat was weighed and the respective repetitions were
carried out, according to the hamburger formulation (table 1). Next,
homogenisation was carried out, a process that consisted of mixing
the ground meat with the other raw materials (egg, salt, cumin,
pepper, garlic powder, breadcrumbs, sunower oil, and pitahaya peel
powder) until a homogeneous mixture was obtained.
The meat mixture was moulded using plastic hamburger patties,
then packaged, sealing the meat patties in polyethylene bags. The
prepared hamburgers were stored frozen (-2 °C) for 24 hours until
laboratory analysis.
Table 1. Formulation of the treatments under study for rabbit
meat burgers.
Raw materials
(g)
T0
0 % ppp
T1
3 % ppp
T2
5 % ppp
T3
7 % ppp
T4
9 %
ppp
Egg 50.00 50.00 50.00 50.00 50.00
Salt 15.00 15.00 15.00 15.00 15.00
Cumin 2.00 2.00 2.00 2.00 2.00
Pepper 3.00 3.00 3.00 3.00 3.00
Garlic powder 2.00 2.00 2.00 2.00 2.00
Breadcrumbs 20.00 20.00 20.00 20.00 20.00
Sunower oil 8.00 8.00 8.00 8.00 8.00
Rabbit meat 300.00 300.00 300.00 300.00 300.00
Pitahaya peel
powder
----- 9.00 15.00 21.00 27.00
Total 400.00 409.00 415.00 421.00 427.00
ppp: pitahaya peel powder.
Functional and physicochemical analysis
In the dierent treatments of processed rabbit meat burgers,
their anthocyanin content (acid/base qualitative test method), DPPH
antioxidant activity (Haddouchi et al., 2014) and ABTS (Re et al.,
1999) by spectrophotometric assay, total phenols (Sultana et al.,
2009) by Folin-Ciocalteu spectrophotometric assay, ether extract
pigmentation (spectrophotometric scanning assay), protein (NTE
INEN-ISSO 937), fat (NTE INEN-ISSO 1443), bre (AOAC 962.09),
ash (NTE INEN 520), moisture (NTE INEN-ISSO 1442), total solids
(NTE INEN-ISO 1442).
Determination of texture and colorimetric characteristics
In the dierent treatments under study, an instrumental analysis
of texture prole was performed using a Texture Tester (Shimadzu
Universal Tester EZTest EZ-LX). The parameters evaluated in the
APT were: hardness (N), cohesiveness (dimensionless), adhesiveness
(N) and gumminess (N). Colour analysis was evaluated using a
The presence of anthocyanins in rabbit meat burgers was zero (-)
in the control treatment; however, in T1 and T2 their presence was
moderate (+), notable in T3 and a total change in T4. Similar results
were presented by Muñoz-Murillo et al. (2025), who determined a
notable presence of anthocyanins in chicken nuggets with 10 % red
pitahaya peel powder, demonstrating that this agro-industrial residue
is rich in functional compounds such as anthocyanins. On the other
hand, Rocchetti et al. (2022) determined that adding encapsulated
elderberry extract to beef burgers caused several metabolomic
changes, probably due to the abundance of dierent compounds such
as anthocyanins. The antioxidant activity results (DPPH and ABTS)
obtained were higher in T4 (23.667 ± 0.18 µmol trolox equivalent.g
-1
-
30.353 ± 0.04 µmol trolox equivalent.g
-1
), exceeding those published
by Mancini et al. (2020), who obtained values for ABTS between
1.38 and 1.03 mmol trolox eq.kg
-1
, while for DPPH their averages
ranged from 0.07 to 0.960 trolox eq.kg
-1
in rabbit hamburger meat
cooked with garlic powder.
In terms of total phenol content, T4 showed the best results.
Plastina Cardoso et al. (2023) reported 0.26 ± 0.05 mg EAG.kg
-1
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253 October-December. ISSN 2477-9409.
4-6 |
Table 2. Functional and physicochemical prole of rabbit meat burgers made with pitahaya peel powder.
Parameters
T0
0 % ppp
X
̅
± SD
T1
3 % ppp
X
̅
± SD
T2
5 % ppp
X
̅
± SD
T3
7 % ppp
X
̅
± SD
T4
9 % ppp
X
̅
± SD
Sig.
Dunnett
Anthocyanins - + + ++ +++ ---
DPPH (µmol Trolox) 8.496 ± 0.26
A
12.772 ± 0.08 14.187 ± 0.06 18.688 ± 0.14 23.667 ± 0.18 0.000
ABTS (µmol Trolox) 15.196 ± 0.02
A
17.061 ± 0.02 21.082 ± 0.01 28.341 ± 0.08 30.353 ± 0.04 0.000
Phenols (mg gallic acid) 14.425 ± 0.09
A
16.502 ± 0.12 16.693 ± 0.07 19.982 ± 0.04 19.706 ± 0.05 0.000
Pigmentation 0.032 ± 0.00
A
0.055 ± 0.00 0.076 ± 0.00 0.097 ± 0.00 0.113 ± 0.00 0.000
Protein (%) 20.59 ± 0.06
A
19.56 ± 0.19 19.11 ± 0.07 18.70 ± 0.07 17.88 ± 0.50 0.000
Fat (%) 2.13 ± 0.13
A
2.33 ± 0.25
A
2.30 ± 0.06
A
2.44 ± 0.21
A
2.48 ± 0.20
A
0.247
Fibre (%) 1.08 ± 0.02
A
1.61 ± 0.16 2.05 ± 0.06 2.31 ± 0.04 3.86 ± 0.07 0.000
Ash (%) 1.99 ± 0.00
A
2.27 ± 0.01 2.43 ± 0.03 2.65 ± 0.05 3.19 ± 0.04 0.000
Moisture (%) 73.27 ± 0.33
A
72.68 ± 0.25 71.40 ± 0.01 70.36 ± 0.11 67.75 ± 0.13 0.000
Total solids (%) 26.72 ± 0.33
A
27.31 ± 0.25 28.58 ± 0.01 29.63 ± 0.11 32.23 ± 0.13 0.000
ppp: pitahaya shell powder. Means not labelled with the letter A are signicantly dierent from the mean of the control level.
of phenolic compounds in hamburger meat with Goji berry extract.
With regard to the pigmentation of the ethereal extract in the control
treatment, a lower presence (0.032 ± 0.00) was observed due to the
pigment oxymyoglobin, which particularly generates an attractive
red colour characteristic of meat (Valenzuela and Pérez, 2016).
Pigmentation was higher in T4 due to the anthocyanins present in
the pitahaya peel powder. Plant pigments and natural compounds
improve colour and reduce lipid oxidation in meat-based foods.
The protein content in the processed rabbit meat burgers was lower
in the treatments with ppp. This is because the protein content is low,
as stated by Siriwan et al. (2022), who in their research determined a
6.15 % protein content in pitahaya (Hylocereus undatus) peel powder.
Therefore, as the concentration of PPP in the formula increases,
protein levels decrease considerably. However, the experimental
products were within the permissible protein limit (minimum 10 %)
established in the Ecuadorian standard NTE INEN 1338 (2012).
The fat values were similar among the rabbit meat burger
formulations, falling within 2%, which makes the meat product
an important lean food in the human diet. Mancini et al. (2017)
demonstrated that adding ginger powder increased the PUFAω3
fatty acid compounds in rabbit meat burgers in both raw and cooked
samples, unlike in this study, where the values remained the same
within the same range when using pitahaya peel powder.
The signicant bre content in the meat product was due to its
presence in the pitahaya peel, which, according to Siriwan et al.
(2022), contains around 65.2 % bre, meaning that its consumption
could promote the proper functioning of the digestive system in the
human body.
With regard to ash content, pitahaya peel powder had a signicant
inuence on rabbit meat burgers, i.e. the higher the amount of
pitahaya peel powder in the formula, the greater the slight increase
in the ash levels of the meat product, which may benet consumers
by providing them with a food product that is a potential source of
minerals.
The moisture content was higher in T0, while lower results were
found in T4. The moisture content in meat products is important
because this physicochemical quality parameter is the ideal medium
for the proliferation and activation of pathogenic microorganisms.
Studies such as that by Castro et al. (2020) reported a moisture content
of 78.6 % in hamburger meat. The total solids results obtained in this
study refer to those presented by García et al. (2012) with maximum
averages of 38.82 ± 2.01 % total solids in hamburger meat with
legume our.
Texture prole and colorimetry
Table 3 details the results of the analysis of variance and Dunnett’s
comparison of means test for the texture prole and colorimetry
variables.
Table 3. Texture and colorimetry prole (CIELab) in rabbit meat burgers made with pitahaya peel powder.
Parameters
T0
0 % ppp
X
̅
± SD
T1
3 % ppp
X
̅
± SD
T2
5 % ppp
X
̅
± SD
T3
7 % ppp
X
̅
± SD
T4
9 % ppp
X
̅
± SD
Sig.
Dunnett
Hardness (N) 1.805 ± 0.03
A
1.844 ± 0.23
A
2.549 ± 0.43 2.501 ± 0.33
A
4.552 ± 0.28 0.000
Cohesiveness 0.0511 ± 0.00
A
0.199 ± 0.34
A
0.547 ± 0.02
A
0.543 ± 0.07
A
0.465 ± 0.05
A
0.112
Adhesiveness (N) -0.223 ± 0.05
A
-0.429 ± 0.04 -0.504 ± 0.05 -0.616 ± 0.08 -0.855 ± 0.14 0.000
Gumminess (N) 0.924 ± 0.01
A
0.416 ± 0.72
A
1.407 ± 0.30
A
1.375 ± 0.36
A
2.128 ± 0.39 0.007
CIELab
L* 53.43 ± 0.61
A
48.92 ± 0.10 46.73 ± 3.68 39.39 ± 0.47 35.22 ± 1.19 0.000
a* 2.43 ± 0.01
A
14.23 ± 0.51 19.04 ± 0.20 20.76 ± 0.93 23.06 ± 0.48 0.000
b* 12.85 ± 0.03
A
7.15 ± 0.98 4.98 ± 1.14 3.23 ± 0.83 3.47 ± 1.92 0.000
ppp: pitahaya shell powder. Means not labelled with the letter A are signicantly dierent from the mean of the control level.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Benavides-Gonzalez et al Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252
5-6 |
The hardness of the rabbit meat hamburger was lower for the
control treatment T0: 1.805 ± 0.03 N, while the treatment with the
highest hardness was T4: 4.552 ± 0.28 N. These results demonstrated
that the higher the concentration of pitahaya peel powder in the
product, the higher the hardness values. Lima da Silva et al. (2023)
reported a hardness of 23.1 ± 10.3 N in hamburger meat with
sweet passion fruit peel. On the other hand, Parafati et al. (2019)
demonstrated that by directly adding or encapsulating prickly pear
fruit extract in the formulation of beef hamburger meat, the hardness
of the meat product would increase signicantly from 10.55 ± 1.46
to 15.76 ± 5.66 N. The addition of by-products to meat products can
improve their texture.
The adhesiveness of rabbit meat burgers was higher in treatments
with pitahaya peel powder. In contrast, Muñoz-Murillo et al. (2025)
reported lower adhesiveness of -0.01 ± 1.10 N in chicken nuggets
with 4, 7 and 10 % pitahaya peel powder, indicating that pitahaya
by-products can increase or decrease adhesiveness depending on the
meat product.
The gumminess was higher in treatments with percentages greater
than 5 % pitahaya peel powder. These results are similar to those
obtained by Muñoz-Murillo et al. (2025), who obtained 3.90 ± 0.29
N in chicken nuggets with 4 % pitahaya peel powder. Gumminess can
be inuenced by the bre content present in pitahaya peel powder,
as stated by Rocha Saraiva et al. (2019), who demonstrated in their
study that when fat was partially replaced by brewers waste (malt
bagasse high in bre) in hamburger meat, the gumminess of the
meat product increased considerably.
According to the CIELab scale, the treatment with the best
brightness (L*) characteristic was T0 (0 % ppp), while T4 had the
best saturation (a*) and tone (b*) close to reddish-yellow due to the 9
% ppp concentration. García-Vásquez et al. (2020) determined values
of L* (48.54 ± 0.83), a* (1.70 ± 0.25) and b* (8.30 ± 0.57) for rabbit
burgers infused with Chenopodium.
Microbiological analysis
The microbiological quality results for all treatments under study
are within the requirements of standard NTE INEN 1338 (2012) for
meat products (table 4).
Table 4. Microbiological analysis of rabbit meat burgers made
with pitahaya peel powder.
Microorganisms
T0
0 % ppp
T1
3 % ppp
T2
5 % ppp
T3
7 % ppp
T4
9 % ppp
Mesophilic
aerobes
1.0x10
6
1.0x10
6
1.0x10
6
1.0x10
6
1.0x10
6
Escherichia coli 1.0x10
2
1.0x10
2
1.0x10
2
1.0x10
2
1.0x10
2
Staphylococcus
aureus
1.0x10
3
1.0x10
3
1.0x10
3
1.0x10
3
1.0x10
3
Salmonella Ausencia Ausencia Ausencia Ausencia Ausencia
ppp: pitahaya shell powder. CFU: Colony-forming units.
Sensory analysis
The treatments under study did not show statistical signicance
among themselves for the variables of taste, aroma, colour and texture
(table 5), i.e. statistically all treatments are considered similar in the
organoleptic attributes evaluated by untrained tasters. The sensory
analysis results established an organoleptic acceptance rating of 5.00
points for all treatments in terms of avour, aroma, colour and texture
in rabbit meat burgers made with pitahaya peel powder, indicating a
low level of acceptability for the meat product. In contrast, studies
such as that by Mohamed Mokhtar and Sallah Eldeep (2020) identied
that adding 0.01 % mango peel our to beef burgers resulted in the
most acceptable sensory acceptance of the meat product by tasters.
Table 5. Sensory acceptability of rabbit meat burgers.
Sensory
attributes
T0
0 % ppp
X
̅
± DE
T1
3 % ppp
X
̅
± DE
T2
5 % ppp
X
̅
± DE
T3
7 % ppp
X
̅
± DE
T4
9 %ppp
X
̅
± DE
Sig.
Flavour 5.13 ± 1.84 5.30 ± 1.73 5.17 ± 2.06 5.13 ± 1.79 5.27 ± 1.87 0.8928
ns
Aroma 5.17 ± 1.41 5.13 ± 1.58 5.06 ± 1.72 5.11 ± 1.51 5.30 ± 1.50 0.9491
ns
Colour 5.23 ± 1.56 5.34 ± 1.34 5.39 ± 1.43 4.81 ± 1.58 5.14 ± 1.51 0.1609
ns
Texture 5.23 ± 1.64 5.29 ± 1.51 5.61 ± 1.42 5.19 ± 1.69 5.20 ± 1.77 0.4200
ns
ppp: pitahaya shell powder. ns: not signicant
Conclusions
A signicant increase in functional and nutritional compounds
was demonstrated in rabbit meat burgers enriched with pitahaya peel
powder, generating a viable alternative for the use of agro-industrial
waste and the nutritional improvement of meat products.
Treatment T4 showed the best results in terms of colorimetry (a*
and b*) and texture prole in the variables of hardness, adhesiveness,
and chewiness. The treatments were microbiologically acceptable,
complying with Ecuadorian technical standard NTE INEN 1338.
Untrained tasters expressed a low degree of acceptance in terms
of sensory response attributes. Therefore, it is important to conduct
further studies to improve the sensory perception of tasters in the
processed product.
Literature cited
Aquino-López, J., Chávez-Martínez, A., García-Macías, J., Méndez-Zamora, G.,
Rentería-Monterrubio, A., Dalle-Zotte, A., & García-Flores, L. (2020).
El aceite esencial y bagazo de orégano (Lippia berlandieri Schauer)
afectan el comportamiento productivo y calidad de la carne de conejo.
Revista Mexicana de Ciencias Pecuarias, 11(3), 701 - 717. https://doi.
org/10.22319/rmcp.v11i3.5420
Castro, L., Oliviera, D., Zambiazi, C., & Lameiro K. (2020). Physicochemical
characterization and microbiological analysis of Oligosarcus robustus raw
sh meat and development a sh hamburger. Revista Chilena de Nutrición,
47(4), 561 - 567. http://dx.doi.org/10.4067/S0717-75182020000400561
Cantarero Aparicio, M., Sánchez de Pedro, E., Peña Blanco, F., & Perea Muñoz,
J. (2022). Una aproximación a las características de la canal y de la carne
de conejos de raza Nueva Zelanda. Ciencia Veterinaria, 24(1), 19 - 29.
https://cerac.unlpam.edu.ar/index.php/veterinaria/article/view/6565
Cervantes-Sánchez, M., Huicab-Martínez, J., García-Vela, J., & Vanoye-Eligio,
M. (2017). Obtaining a natural dye from the pitahaya (Hylocereus
undatus haworth, britton and rose) from the southern region of the state
of Campeche. Mexican Journal of Biotechnology, 2(2), 65 - 73. https://
doi.org/10.29267/mxjb.2017.2.2.65
Echegaray, N., Estévez, M., & Carballo, J. (2018). Chestnuts and by-products as
source of natural antioxidants in meat and meat products: A review. Trends
in food Science & Technology, 82, 110 - 121. https://doi.org/10.1016/j.
tifs.2018.10.005
Flores, J., & García, M. (2016). Perl toquímico y actividad antioxidante
de extractos de pitahaya Hylocereus undatus. Jóvenes en la Ciencia,
2(1), 29 - 33. https://www.jovenesenlaciencia.ugto.mx/index.php/
jovenesenlaciencia/article/view/992
García, O., Ruíz, J., & Iria, A. (2012). Evaluación físico-química de carnes para
hamburguesa bajas en grasas con inclusión de harina de quinchoncho
(Cajanus cajan) como extensor. RevistaCientíca FCV-LUZ, XXII(6),
497 - 506. https://produccioncienticaluz.org/index.php/cientica/article/
view/15742
García-Vásquez, L., Zepeda-Bastida, A., Ayala-Martínez, M., & Soto-Simental,
S. (2020). Infusion of Chenopodium ambrosioides consumed by rabbits:
eects on carcass, meat and burger quality. Food Science and Technology,
40, 451 - 457. https://doi.org/10.1590/fst.32819
González Balmaceda, F., Chacón-Villalobos, A., & Pineda-Castro, M. (2023).
Caracterización de carne de conejo marinada en mostaza y vino blanco
con especias. Agronomía Mesoamaricana, 34(3), 43 - 53. http://dx.doi.
org/10.15517/am.2023.53343
Herrera-Stanziola, J., Chacón-Villalobos, A., & Pineda-Castro, M. (2023).
Caracterización sicoquímica y microbiológica de carne de conejo
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253 October-December. ISSN 2477-9409.
6-6 |
‘’Nueva Zelanda’ y efecto del marinado con CaCl2. Agronomía
Mesoamericana, 34(3), 1 - 14. http://dx.doi.org/10.15517/am.2023.51204
Haddouchi, F., Chaouche, T., Ksouri, R., Medini, F., Sekkal, F., & Benmansour,
A. (2014). Antioxidant activity proling by spectrophotometric methods
of aqueous methanolic extracts of Helichrysum stoechas sobsp rupestre
and Phagnalon saxatile subsp. Saxatile. Chinese Journal of Natural
Medicines, 12(6) 415-422. http://dx.doi:10.1016/S1875-5364(14)60065-
0
Hleap Zapata, J., Romero Erazo, Y., & Dussán Sarria, S. (2014). Bromatological,
microbiological and sensory comparison of two dierent formulations
of sausages made with rabbit (Oryctolagus cuniculus) meat. Acta
Agronómica, 63(1), 18 - 24. http://dx.doi.org/10.15446/acag.v63n1.37631
López-Velasco, D., Sosa-Montes, E., Pro-Martínez, A., González-Cerón, F., &
Vargas-Galicia, A. (2021). Efecto antioxidante de la miel de abeja sobre
la carne de conejo almacenada en refrigeración. CienciaUAT, 15(2), 135
- 143. https://doi.org/10.29059/cienciauat.v15i2.1395
Lima da Silva, I., Santos Coutinho, J., dos Reis Goes, E., & Tobal, T. (2023).
Development of sh hamburger with reduced sodium content using sweet
passion fruit shell our. Food Science and Technology, 43, 1 - 8. https://
doi.org/10.5327/fst.0095522
Lin, X., Gao, H., Ding, Z., Zhan, R., Zhou, Z., & Ming, J. (2021). Comparative
metabolic proling in pulp and peel of green and red pitayas (Hylocereus
polyrhizus and Hylocereus undatus) reveals potential valorization in the
pharmaceutical and food industries. BioMed Research International, 1 -
10. https://doi:10.1155/2021/6546170
Mancini, S., Preziuso, G., Parisi, G., & Paci, G. (2017). Modications of fatty
acids prole, lipid peroxidation and antioxidant capacity in raw and
cooked rabbit burgers added with ginger. Meat Science, 133, 151 - 158.
https://doi:10.1016/j.meatsci.2017.07.003
Mancini, S., Mattioli, S., Nuvoloni, R., Pedonese, F., Bosco, A., & Paci, G. (2020).
Eects of garlic powder and salt additions on fatty acids prole, oxidative
status, antioxidant potential and sensory properties of raw and cooked
rabbit meat burgers. Meat Science, 169, 3 - 12. https://doi.org/10.1016/j.
meatsci.2020.108226
Mohamed Mokhtar, S., & Sallah Eldeep, G. (2020). Impact of mango peel
extract on the physicochemical properties, microbiological stability and
sensory characteristics of beef burgers during cold storage. Egyptian
Journal of Food Science, 48(2), 245 - 258. https://doi:10.21608/
ejfs.2020.31683.1056
Muñoz-Murillo, J.P., García-Mendoza, J., Arévalo-Reyes, L., & Cedeño-
Cedeño, J. (2024). Galletas dulces con sustitución parcial de harina de
trigo por polvo de cáscara de pitahaya (Hylocereus undatus). Revista de
Investigación e Innovación Agropecuaria y de Recursos Naturales, 11(1),
18 - 30. https://doi.org/10.53287/kdgc7623aq78f
Muñoz-Murillo, J.P., García-Mendoza, J., Ramírez-Cedeño, J., & Moreira-
Sabanda, M. (2025). Nuggets de pollo (Gallus gallus domesticus)
enriquecidos con polvo de cáscara de pitahaya (Hylocereus undatus).
Revista de Investigación e Innovación Agropecuaria y de Recursos
Naturales, 12(1), 23-36. https://doi.org/10.53287/ykyu8326ds89e
NTE INEN 1338. (2012). Norma técnica ecuatoriana. Carne y productos cárnicos.
Productos cárnicos crudos, curados – madurados – precocidos y cocidos.
Requisitos. https://es.scribd.com/document/319403182/Norma-INEN-
Carnes
Parafati, L., Palmeri, R., Trippa, D., Restuccia, C., & Fallico, B. (2019). Quality
maintenance of beef burger patties by direct addiction or encapsulation
of a prickly pear fruit extract. Frontiers in Microbiology, 2 - 9. https://
doi:10.3389/fmicb.2019.01760
Plastina Cardoso, M., Pelaes Vital, A., Medeiros, A., Rocha Saraiva, B., & Nunes
do Prado, I. (2023). Goji berry eects on hamburger quality during
refrigerated display time. Food Science and Technology, (43), 1 - 7.
https://doi.org/10.1590/fst.68322
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice, C.
(1999). Antioxidant activity applying an improved ABTS radical
cation decolorization assay. Free Radical Biology and Medicine, 26(10),
1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rocha Saraiva, B., Calvo Agustinho, B., Pelaes Vital, A., Lidiane, S., & Matumoto
Pintro, P. (2019). Eect of brewing waste (Malt bagasse) addition on the
physicochemical properties of hamburgers. Journal of Food Processing
and Preservation, 43(10), 1 - 9. https://doi.org/10.1111/jfpp.14135
Rocchetti, G., Becchi, P., Lucini, L., Cittadini, A., Munekata, P., Pateiro, & M.,
Lorenzo, J. (2022). Elderberry (Sambucus nigra L.) Encapsulated extracts
as meat extenders against lipid and protein oxidation during the shelf-
life of beef burgers. Antioxidants, 11(11), 2 - 9. https://doi.org/10.3390/
antiox11112130
Siriwan, C., Thavaree, T., Mahinda, A., & Sirichai, A. (2022). Investigating the
impact of dragon fruit peel waste on starch digestibility, pasting, and
thermal properties of ours used in Asia. Foods, 11(14), 1 - 10. https://
doi:10.3390/foods11142031
Sultana, B., Anwar, F., & Ashraf., M. (2009). Eect of extraction solvent/technique
on the antioxidant activity of selected medicinal plant extracts. Molecules,
14(16), 2167-2180. https://doi.org/10.3390/molecules14062167
Tang, W., Li, W., Yang, Y., Lin, X., Wang, L., Li, C., & Yang, R. (2021). Phenolic
compounds prole and antioxidant capacity of pitahaya fruit peel from
two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus).
Foods, 10(6), 1 - 16. https://doi.org/10.3390/foods10061183
Valenzuela, C., & Pérez, P. (2016). Actualización en el uso de antioxidantes
naturales derivados de frutas y verduras para prolongar la vida útil de la
carne y productos cárneos. Revista Chilena de Nutrición, 43(2), 1 - 10.
http://dx.doi.org/10.4067/S0717-75182016000200012