This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rueda-Luna et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254215
5-5 |
plant). These values are below those reported by Moreno-Reséndez et
al. (2019) for the Mona Lisa F1 hybrid, which yielded 3.987 kg per
plant. These discrepancies could be attributed to the diering nutrient
requirements of the cultivars.
The highest dry leaf weight was observed when the K
+
/Ca
2+
+Mg
2+
ratio was 1.0. However, the dierent K
+
/Ca
2+
+Mg
2+
ratios in the
nutrient solution did not aect the dry leaf weight of the plant.
Nevertheless, they could inuence greater calcium assimilation and
a potential increase in average fruit weight. The results suggest that
the optimal K
+
/Ca
2+
+Mg
2+
ratio in plant nutrition may be established
a balance point between production and dry plant weight, situated
between 1.0 and 1.8 (in meq.L
-1
). These values may be considered
as reference indices for zucchini cultivation. Similar results were
reported by Diovisalvi et al. (2021) in a study of dierent soybean crop
nutrition. In a related study, Aguilar-Carpio et al. (2022) observed that
the integration of chemical fertilization with biostimulants, such as
seaweed extracts, resulted in enhanced growth, yield, and protability
in zucchini. These ndings highlight the potential of optimized
nutrient management strategies to enhance crop productivity. In
line with this, Melito et al. (2023) found that applying appropriate
levels of organic-mineral fertilizers increased the growth and yield
of zucchini, supporting the notion that nutrient optimization plays a
signicant role in enhancing zucchini productivity.
The results of the leaf analysis reect a higher concentration
of calcium (4377.0 ppm) in Ambrosia compared to Zuchinni Gray
(4156.33 ppm). Similarly, the highest calcium values were recorded
in plants that received the nutrient solution with a K
+
/Ca
2+
+Mg
2+
ratio
of 1.0 and 1.4, with values of 4550.0 ppm in both cases. The statistical
analysis revealed no signicant dierences in the mineral elements
potassium and magnesium among the cultivars or across the dierent
K
+
/Ca
2+
+Mg
2+
ratios.
The overall, the assimilation of cations K
+
, Ca
2+
and Mg
2+
was
found to be similar between the evaluated cultivars, irrespective of
the harvest date. The absorption of potassium (4225.0 ppm) was
higher following fruit formation with a K
+
/Ca
2+
+Mg
2+
ratio of 1.4,
as potassium is an element that typically inuences fruit coloration,
increasing pigmentation by raising carotenoid content while reducing
chlorophyll content (CPHA, 2004). Furthermore, the absorption of
calcium reached concentrations of 4550.0 ppm, while magnesium
reached 2050.0 ppm. These results are in accordance with the ndings
of Rodas-Gaitán et al. (2012), who observed that in zucchini, calcium
was the primary absorbed element at 7.47, followed by magnesium
at 2.07 and potassium at 1.37 g.plant
-1
. However, the present study
revealed higher potassium concentration was observed. With regard
to calcium, its assimilation also increased during the fruiting stage
with the highest contents observed in the leaves of plants that received
a K
+
/Ca
2+
+Mg
2+
ratio of 1.0 and 1.4. In contrast, plants that received
a K
+
/Ca
2+
+Mg
2+
ratio of 0.2 and 0.6 exhibited the lowest calcium
contents across all evaluated physiological stages, potentially due to
the antagonism relationship between the Ca
2+
ion and K
+
(Villalobos
et al., 2009). This further supports the idea that nutrient balance,
especially between calcium and potassium, plays a key role in
determining plant health and fruit yield (Neocleous & Savvas, 2018).
Seth et al. (2018) similarly found that an optimal balance between
K
+
, Ca
2+
, and Mg
2+
is essential for maximizing nutrient uptake and
minimizing the antagonistic eects between these cations.
Conclusions
It can be concluded that there is a varietal eect, with the
Ambrosia variety demonstrating a higher total production compared
to Zuchinni Gray. The K
+
/Ca
2+
+Mg
2+
ratio signicantly inuenced
the yield and nutritional composition of zucchini, with Ambrosia
showing superior productivity compared to Zuchinni Gray. The K
+
/
Ca
2+
+Mg
2+
ratio with a value of 1.4 (Ambrosia) and 1.8 (Zuchinni
Gray) was observed to increase total production, which could be
considered as a reference for zucchini cultivation. The optimal ratio
of 1.4 to 1.8 promoted increased total production, fruit count, and
enhanced calcium absorption. Moreover, the K
+
/Ca
2+
+Mg
2+
ratio of
1.4 led to an increase in leaf calcium content, while the potassium and
magnesium contents remained constant.
Literature cited
Aguilar-Carpio, C., Cervantes-Adame, Y.F., Sorza-Aguilar, P.J., & Escalante-
Estrada, J.A.S. (2022). Growth, yield, and protability of zucchini
(Cucurbita pepo L.) fertilized with chemical and biological sources.
Revista Terra Latinoamericana, 40, e1059. https://doi.org/10.28940/terra.
v40i0.1059
Alcántar-González, G., y Trejo-Téllez, L.I. (2010). Nutrición de cultivos. Colegio
de Posgraduados, Mundi–Prensa, México, 454 pp. ISBN 978-968-7462-
48-6
Cadahía-López, C. (2005). Fertirrigación. Cultivos agrícolas, frutales y
ornamentales. 3a Edición, Mundi-Prensa, Madrid, España, 631 pp. ISBN
84-8476-247-5
CPHA. (2004). Manual of fertilizers for high yield crops. California Plant Health
Association, Editorial Limusa. 366 pp. ISBN: 978-9681847661
Diovisalvi, N.V., Reussi-Calvo, N.I., Boxler, M., y García, F. (2021). Relevamiento
de calcio, magnesio, potasio y micronutrientes en zonas con diferente
productividad de soja. Ciencia del Suelo, 39(1), 63-79. https://www.
scielo.org.ar/pdf/cds/v39n1/1850-2067-cds-39-01-63.pdf
Estrada-Herrera, R., Hidalgo-Moreno. C., Guzmán-Plazola, R., Almaraz-Suárez,
J.J., Navarro-Garza, H., & Etchevers-Barra, J.D. (2017). Soil quality
indicators to evaluate soil fertility. Agrociencia, 51, 813-831. https://
www.scielo.org.mx/pdf/agro/v51n8/1405-3195-agro-51-08-813-en.pdf
Havlin, J.L., Tisdale, S.L., Nelson, W.L., & Beaton, J.D. (2017). Soil fertility and
fertilizers: An Introduction to Nutrient Management. 8th edition, India
Education Services Pvt. Ltd: Pearson. ISBN 978-93-325-7034-4
INEGI. (2014). Anuario estadístico y geográco de Puebla. Instituto Nacional de
Estadística y Geografía, México. https://www.inegi.org.mx
Maroto-Borrego, J.V. (2002). Horticultura herbácea especial. 5ª Edición, Ediciones
Mundi-Prensa, España, 704 pp. ISBN 978-8484760429
Melito, S., Ronga, D., Marceddu, D., Kallikazarou, N.I., Antoniou, MG., &
Giannini, V. (2023). Organo-mineral fertilizer containing struvite from
liquid digestate for Cucurbita pepo L. seedling production. Journal of
Soil Science and Plant Nutrition, 23, 6707-6720. https://doi.org/10.1007/
s42729-023-01524-9
Moreno-Reséndez, A., Reyes-Carrillo, J.L., Preciado-Rangel, P., Ramírez-
Aragón, M.G., y Moncayo-Luján, M.R. (2019). Desarrollo de la
calabacita (Cucurbita pepo L.) con diferentes fuentes de fertilización
bajo condiciones de invernadero. Ecosistemas y Recursos Agropecuarios,
6(16), 145-151. https://doi.org/10.19136/era.a6n16.1803
Neocleous, D., & Savvas, D. (2018). Modelling Ca
2+
accumulation in soilless
zucchini crops: Physiological and agronomical responses. Agricultural
Water Management, 203, 197-206. https://doi.org/10.1016/j.
agwat.2018.03.017
Purquerio, L.F.V., Mattar, G.S., Duart, A.M., de Moraes, C.C., Araújo, H.S., &
Santos, F.F.D. (2019). Growth, yield, nutrient accumulation and export
and thermal sum of Italian zucchini. Horticultura Brasileira, 37, 221-227.
http://dx.doi.org/10.1590/S0102-053620190214
Rodas-Gaitán, H.A., Rodríguez-Fuentes, H., Ojeda-Zacarías, Ma. del C., Vidales-
Contreras, J.A., y Luna-Maldonado, A.I. (2012). Curvas de absorción
de macronutrientes en calabacita italiana (Cucurbita pepo L.). Revista
Fitotecnia Mexicana, 35(5), 57–60. https://revistatotecniamexicana.org/
documentos/35-3_Especial_5/10r.pdf
Santos-Coello, B., y Ríos-Mesa, D. (2016). Cálculo de soluciones nutritivas en
suelo y sin suelo. Servicio de Agricultura y Desarrollo Rural, Cabildo
Insular de Tenerife, España, 113 pp. ISBN 978-84-15012-87-0
SDR. (2007). Cadenas productivas agropecuarias y acuícolas del Estado de
Puebla. Secretaría de Desarrolla Rural, Gobierno del Estado de Puebla,
México, pp. 89-90.
Seth, A., Gothelf, R., & Shenker, M. (2018). The K to (Ca + Mg) ratio eect
on potassium availability for plants - splitting soil- from plant-related
interactions. In: 20th EGU General Assembly, Geophysical Research
Abstracts, Vienna, Austria, 20, p. 9425.
SIAP. (2023). Anuario estadístico de la producción agrícola. Servicio de
Información Agroalimentaria y Pesquera, México. https://nube.siap.gob.
mx/cierreagricola/
Statgraphics Centurion XVI version 16.1.18 for Windows. ©StatPoint
Technologies, Inc., 1982-2012, USA.
Villalobos, F.C., Mateos, L., Orgaz, F., y Fereres, E. (2009). Fitotecnia: Bases y
tecnologías de producción agrícola. 2a edición, Editorial Mundi-Prensa.
Madrid, España, 496 pp. ISBN 978-84-8476-037-5