© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author:gerardo.pamanes@gmail.com
Keywords:
Biol
Bovine manure
Production
Fermentation
Chemical composition
Digestibility
Eect of the application of a biofertilizer on the yield of forage oats (Avena sativa L.) in the
southern Durango, Mexico
Efecto de la aplicación de biofertilizante sobre el rendimiento de avena forrajera (Avena sativa L.)
en el sur de Durango, México
Efeito da aplicação de biofertilizantes no rendimento de aveia forrageira (Avena sativa L.) no sul de
Durango, México
Oscar Fabian Aguirre-Córdova¹
Roberto Valencia Vázquez
2
Ixchel Abby Ortíz Sánchez
3
Jorge Armando Chávez Simental
4
Elia Esther Araiza Rosales
5
Gerardo Antonio Pámanes-Carrasco
6
*
Rev. Fac. Agron. (LUZ). 2025, 42(1): e244213
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n1.XIII
Crop production
Associate editor: Dra. Rosa Razz
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
¹Universidad Juárez del Estado de Durango - Doctorado
Institucional en Ciencias Agropecuarias y Forestales,
Durango, Dgo., México.
2
Tecnológico Nacional de México, Instituto Tecnológico de
Durango, Blvd. Felipe Pescador #1830 Ote., C.P. 34080,
Durango, Dgo., México.
3
Tecnológico Nacional de México, Instituto Tecnológico
del Valle del Guadiana. México. Carretera Durango-México
Km. 22.5, C.P. 34160, Villa Montemorelos, Dgo., México.
4
UJED-Instituto de Silvicultura e Industria de la Madera.
Blvd. Guadiana #501-Ciudad Universitaria, C.P. 34120.
Durango, Dgo., México.
5
CONAHCYT-UJED-Facultad de Medicina Veterinaria y
Zootecnia. Carretera Durango-El Mezquital km 11.5, C.P.
34170, Durango, Dgo., México.
6
CONAHCYT-UJED-Instituto de Silvicultura e Industria de
la Madera. Blvd. Guadiana #501-Ciudad Universitaria, C.P.
34120.Durango, Dgo., México.
Received: 23-10-2024
Accepted: 28-01-2025
Published: 23-02-2025
Abstract
It is a priority to identify more ecient ways to fertilize crops
without harming the soils. Biofertilizers obtained from the anaerobic
digestion of manure can emerge as an ecological alternative in crop
production. This study aimed to evaluate the yield and nutritional
characteristics of oats (Avena sativa L.) fertilized with dierent
doses of biofertilizer (Biol) through foliar application. In southern
Durango, Mexico, four doses of Biol were applied: 0, 220, 440,
660 and 880 L.ha
-1
, corresponding to treatments T1, T2, T3, T4,
and T5, respectively, using a completely randomized block design.
The crude protein (CP) content was similar among treatments
(p>0.05); meanwhile, neutral detergent ber (NDF), acid detergent
ber (ADF), and phosphorus (P) decreased with the maximum
doses of Biol (p<0.05). Regarding in vitro dry matter digestibility
(IVDMD) dierences were found (p<0.05). Fresh weight (FW)
and dry weight (DW) yields increased with the higher doses of
Biol, achieving higher values of 25.50 and 7.05 t.ha
-1
, respectively.
Additionally, the application of the biofertilizer Biol increased oat
yield and improved some nutritional values of the forage. These
results suggest that Biol is a viable alternative to the use of chemical
fertilizers, promoting sustainable agriculture and contributing to
the mitigation of the negative environmental impact generated by
chemical fertilizers.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254213 January-March. ISSN 2477-9409.
2-6 |
Resumen
Es prioritario identicar formas más ecientes de fertilizar los
cultivos sin ser perjudiciales para los suelos. Los biofertilizantes
obtenidos a partir de la digestión anaerobia del estiércol pueden
surgir como una alternativa ecológica en la producción de cultivos.
Este estudio tuvo como objetivo evaluar el rendimiento y las
características nutricionales de avena (Avena sativa L.) fertilizada
con diferentes dosis de biofertilizante (Biol) mediante aplicación
foliar. En el sur de Durango, México, se evaluó la aplicación de
cuatro dosis de Biol: 0, 220, 440, 660 y 880 L.ha
-1
correspondientes
a los tratamientos T1, T2, T3, T4 y T5, respectivamente, utilizando
un diseño de bloques completamente al azar. Los contenidos de
proteína cruda (PC) fueron similares entre tratamientos (p>0,05);
mientras que, la bra detergente neutra (FDN), la bra detergente
ácida (FDA) y el fósforo (P) disminuyeron con las dosis máximas
de Biol (p<0,05). En cuanto a la digestibilidad in vitro de la materia
seca (DIVMS) se encontraron diferencias (p<0,05). Los rendimientos
en peso fresco (PF) y peso seco (PS) se incrementaron con las dosis
más altas de Biol; alcanzándose valores más elevados con 25.50 y
7.05 t.ha
-1
, respectivamente. Además, la aplicación de biofertilizante
Biol incrementó el rendimiento de avena y mejoró algunos valores
nutricionales del forraje. Estos resultados sugieren que el Biol es una
alternativa viable al uso de fertilizantes químicos, promoviendo una
agricultura sostenible y contribuyendo a la mitigación del impacto
ambiental negativo generado por los fertilizantes químicos.
Palabras clave: Biol, estiércol bovino, producción, fermentación,
composición química, digestibilidad.
Resumo
É uma prioridade identicar formas mais ecientes de fertilizar
culturas sem prejudicar os solos. Biofertilizantes obtidos da digestão
anaeróbica de esterco podem surgir como uma alternativa ecológica
na produção agrícola. Este estudo teve como objetivo avaliar o
rendimento e as características nutricionais da aveia (Avena sativa
L.) fertilizada com diferentes doses de biofertilizante (Biol) por meio
da aplicação foliar. No sul de Durango, México, foram aplicadas
quatro doses de Biol: 0, 220, 440, 660 e 880 L.ha
-1
, correspondendo
aos tratamentos T1, T2, T3, T4 e T5, respectivamente, utilizando
um delineamento de blocos completamente randomizados. O teor
de proteína bruta (PB) foi semelhante entre os tratamentos (p>0,05).
Enquanto isso, a bra em detergente neutro (FDN), a bra em
detergente ácido (FDA) e o fósforo (P) diminuíram com as doses
máximas de Biol (p<0,05). Em relação à digestibilidade da matéria
seca in vitro (DMSIV), foram encontradas diferenças (p<0,05).
Os rendimentos de peso fresco (PF) e peso seco (PS) aumentaram
com as doses mais altas de Biol, alcançando valores mais altos de
25,50 e 7,05 t.ha
-1
, respectivamente. Adicionalmente, a aplicação
do biofertilizante Biol aumentou o rendimento da aveia e melhorou
alguns valores nutricionais da forragem. Esses resultados sugerem
que Biol é uma alternativa viável ao uso de fertilizantes químicos,
promovendo a agricultura sustentável e contribuindo para a mitigação
do impacto ambiental negativo gerado pelos fertilizantes químicos.
Palabras-chave: Biol, estrume de bovinos, produção, fermentação,
composição química, digestibilidade.
Introduction
The production of livestock is a signicant contributor to the
global economy. Its primary function is to provide animal protein
for human consumption. Forage production is a vital component
in meeting the nutritional requirements of the livestock sector.
In Mexico alone, over 108 million hectares are dedicated to the
cultivation of productive ruminants (Enríquez Quiroz et al., 2021).
Livestock farming is developed in extensive systems and produces
about 70 % of forage for use in animal feed (SIAP, 2013). However,
soils used for pasture production have been coming through several
aectations and degradation due to overexploitation, which leads to
critical reduction in forage production and availability (Duan et al.,
2024). Therefore, irrigated crops have become a signicant source
of forage for animal feed (Souza et al., 2019). However, the demand
for irrigated soils to produce more forage is high, as it is necessary to
supply more productive animals to feed a growing population.
The global population has grown at an alarming rate, accompanied
by a corresponding increase in demands. It is projected that the
global population will reach 9.5 billion people by 2050. Therefore,
the demand for food supplies has reached a critical point. Thus, a
constant increase in livestock demands greater high-quality forage
production (González-Salas et al., 2018). To achieve high yields, it
is necessary to satisfy the nutritional needs of plants, which are not
always supplied by the air, water, and soil. Therefore, it is essential to
provide plants with the requisite macronutrients and micronutrients for
optimal growth (FAO and IFA, 2002). The majority of farmers utilize
chemical fertilizers in their cultivation practices. It would appear that
cultivars result in an immediate increase in production. However,
the environmental cost of this approach is higher. The accumulation
of selective chemical elements in the soils is a signicant concern,
particularly in the case of phosphorated fertilizers (Mukhtar
et al.,
2017; Elbasiouny et al., 2020). Additionally, numerous researchers
have documented detrimental impacts on soil quality following the
application of chemical fertilizers. These practices have been linked
to a decline in soil fertility and the disruption of the native soil
microbiota (Torres-Moya et al., 2016; Vásquez and Maraví, 2017).
As a result, sustainable agricultural practices and the use of organic
products have gained greater prominence.
Biol is a liquid biofertilizer produced through the anaerobic
digestion of one or more substrates, including animal manure,
agricultural residues, and organic matter (Peñael Rodríguez and
Ticona, 2019). The product contains microelements that are not
typically present in chemical fertilizers. Propagation may be achieved
through direct irrigation or foliar application (Linares-Gabriel et
al., 2016). Furthermore, Biol may provide essential macronutrients
including nitrogen, phosphorus and potassium. As a result, it is
regarded as a complex phytostimulant that promotes root growth and
increases photosynthesis, thereby enhancing plant production and
quality (Cabos Sánchez et al., 2019).
Conversely, oats (Avena sativa L.) are frequently utilized as a
forage source in the feeding of cattle and other ruminants. Given
that oats are a seasonal crop, they may be able to adapt to changes
in environmental conditions. However, Alejo Rivera et al. (2020)
reported a negative correlation between reductions in water supply
and production. Additionally, Arias et al. (2021) proposed that oats
can be cultivated in a range of loamy to sandy loamy soils with a
pH slightly acidic to neutral (5 – 7). In addition, they noted that the
production may uctuate contingent on soil and irrigation conditions.
Accordingly, the objective of this study was to assess the yield and
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Aguirre-Córdova et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254213
3-6 |
conditions are mainly characterized as poor soil or degraded soil
(Mosier et al., 2021). These conditions may aect or limit the
growth of crops; maximum yield may be diminished, and the cost
of production of every unit of dry matter will be higher. Moreover,
at these pH values, phosphorus and nitrogen become less accessible
to plants, while calcium, magnesium, and potassium become more
accessible (Osman, 2013). Otherwise, phosphorous levels are
considered as medium. However, as indicated earlier, this may not
be available for plant growth due to pH values (Bouray et al., 2021).
Biofertilizer
Biol is produced locally through the anaerobic digestion of bovine
manure (Cabos Sánchez et al., 2019). The Biol was analyzed for
parameters including pH, electrical conductivity (EC), total Kjeldahl
nitrogen (TKN), phosphorus (P), potassium (K), sodium (Na
+
),
calcium (Ca
+
), magnesium (Mg
+
), chlorides (Cl
-
) and bicarbonates
(HCO
3
-
), all in accordance with the standard set forth NOM-021-
SEMARNAT-2000 (SEMARNAT, 2000).
Treatments and crop eld
The oats were sown in a 2000 eld using the turning technique.
The foliar fertilization doses are detailed in Table 2. Fertilization was
applied using battery backpack sprinklers in two applications, each
consisting of 50% of the total dose, at 30 and 60 days after sowing.
The experiment included three repetitions for each treatment. The
oats were allowed to grow for 90 days post-sowing.
Table 2. Treatments evaluated.
Treatment T1 T2 T3 T4 T5
Dose L.ha
-1
0 220 440 660 880
Biomass production and chemical composition analysis
Following a period of 90 days, the whole plants of oat forage was
harvested for the purpose of evaluating its production in terms of dry
weight (DW) and fresh weight (FW), the total of plants harvested were
selected in accordance with the square meter methodology described
by Ferro-Díaz (2015). Subsequently, the chemical composition of
the samples was analyzed. The dry matter (DM), and crude protein
(CP) were analyzed according to the AOAC (2005) methodology,
while the phosphorus content was determined according to the
Galyean (2010) approach. The neutral detergent ber (NDF) and acid
detergent ber (ADF) were evaluated according to the Van Soest et
al. (1991) protocol. Finally, in vitro dry matter digestibility (IVDMD)
was analyzed using the methodology and equipment provided by
ANKOM Technology (ANKOM-Technology, 2008).
Statistical analysis
Chemical composition and biomass production were evaluated
using a completely randomized block design, analyzed through the
GLM procedure in SAS (2003). The observed dierences among
means were subjected to a Tukey test with a signicance level of
p<0.05.
Results and discussion
The parameters in the biol are presented in Table 3. The foliar
application of fertilizers presents signicant advantages for
agricultural production, providing essential nutrients during instances
when soil conditions hinder root absorption and achieving enhanced
application eciency , thus potentially supplying a portion of
nutritional attributes of oats treated with dierent doses of biol
through foliar application.
Materials and Methods
Experimental location
The experiment was conducted from January to April 2023
in a crop area in Paura, municipality of El Mezquital, Durango
(23°36’43.3” N, 104°21’44.5” W). The mean annual temperature is
19.2 °C, with an annual precipitation of 650 mm (SMN, 2024). The
crop is irrigated via an irrigation channel that draws water from the
San Pedro Mezquital River.
Soil analysis
Four soil samples were extracted using a zigzag sampling pattern
at a depth of 30 cm from the surface of the entire crop eld. The
soil samples were allowed to dry at room temperature in a ventilated
shaded area for a period of ve days. After drying, the samples
were sieved at 2 mm. Subsequently, soil parameters were analyzed,
including pH, electrical conductivity (EC), organic matter (OM),
texture, total Kjeldahl nitrogen (TKN), phosphorus (P), potassium
(K), sodium (Na
+
), calcium (Ca
+
), magnesium (Mg
+
), chlorides (Cl
-
)
and bicarbonates (HCO
3
-
). The soil parameters are presented in Table
1. All analyses and sampling methods were conducted in accordance
with the standards set forth in NOM-021-SEMARNAT-2000
(SEMARNAT-2000).
Table 1. Soil parameter analysis.
Parameter Soil Reference Observation
pH 8.2±02 7.4-8.5
Slightly
alkaline
EC (mS.cm
-2
) 7.01±0.038 4.1-8.0 Saline
OM (%) 1.5±0.30 0.6-1.5 Low
Texture Sandy loam
TKN (%) 0.19±0.0188 0.05 %-0.10% Low
P (mg.kg
-1
) 6.72±0.33
5.5-11
>11
Medium
High
K sol (Cmol.L
-1
) 0.11±0.001 <0.2 Very Low
Ca
+
(Cmol.L
-1
) 0.091±0.008 <2 Very Low
Mg
+
(Cmol.L
-1
) 0.1±0.03 <0.5 Very Low
HCO
3
-
(%) 0.3±.015 <0.5% Very Low
Cl
-
(mg.kg
-1
) 142±12.8 <4000 Low
Na
+
sol (mg.kg
-1
) 50±0.29 <4000 Low
Note: Observations are following NOM-021-SEMARNAT-2000
The pH, EC, and OM are within the ranges specied in reference
data proposed by NOM-021-SEMARNAT-2000. However, the
pH value is deemed to be slightly alkaline, while the EC value is
classied as saline. In contrast, the organic matter value is relatively
low. Nonetheless, the texture obtained (sandy loam) permits the
cultivation of oats, as evidenced by prior research conducted by Arias
et al. (2021).
Additionally, the total nitrogen (TKN), chloride (Cl), and sodium
(Na) values are deemed to be low, while the mineral concentrations
of potassium (K), calcium (Ca), magnesium (Mg), and bicarbonate
(HCO
3
)
are considered very low. These results suggest that soil
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254213 January-March. ISSN 2477-9409.
4-6 |
the nutrients required to support vegetative growth (Otálora et al.,
2018) Analysis of soil indicated that N availability is low; thus, a
N direct foliar application will conduct to higher yields as reported
previously (Henrichsen et al., 2022; Peter et al., 2024). Otherwise,
the concentration of K in Biol is high; higher concentrations of K may
lead to an increase in growth and salinity tolerance as reported by other
studies (Hasanuzzaman et al., 2018). In fact, exogenous application of
K improves organic osmolyte synthesis which indicates that recovery
from osmotic stress will be faster. Likewise, similar concentrations
of K have been reported by Gutierrez Arce et al. (2020) which also
increased alfalfa yield. However, higher concentrations of Na and
Cl are not recommended since they promote salinity in plants and
may decrease growth (Hasanuzzaman et al., 2018). Calcium serves a
pivotal structural function within the middle lamella, where it binds
to the carboxyl groups of pectins, eectively acting as an adhesive
between neighboring cell walls; it also facilitates cellular elongation
in shoot apexes and root tips. Magnesium is indispensable for
chlorophyll synthesis, ATP biosynthesis, and enzyme activation, with
foliar applications oering rapid alleviation of deciency symptoms
compared to soil treatments. Chloride is readily absorbed by plants
and functions as a crucial cofactor in various enzymatic processes,
enhances tissue hydration, regulates osmotic pressure, and contributes
to stomatal movement and ion balance (Micro-Macro Publishing,
2014). The concentration of macronutrients observed in the biol are
similar to those reported by Gil Ramírez et al. (2023); these authors
reported 290 mg.L
-1
of N in the digestate. Contrarily, minerals such
as Na, Ca, Mg, and Cl reported in this study was dierent from those
reported by Mortola et al. (2019).
Table 3. Chemical composition of Biol.
Parameter Biol
pH 8.34±0.05
EC (µS.cm
-2
) 3331±19.23
TKN (mg.L
-1
) 171.58±5.08
P (mg.L
-1
) 16.49±0.36
K (sol mg.L
-1
) 3148±18.17
Na
+
(sol mg.L
-1
) 17164±99
Ca
+
(mg.L
-1
) 113.4±5.6
Mg
+
(mg.L
-1
) 63.96±2.04
HCO
3
-
(mg.L
-1
) 1110±9.9
Cl
-
(mg.L
-1
) 532.5±3.2
Table 4 presents the results of the chemical composition and yield
of the harvested oats. It is observed that the application of Biol did not
aect the total N and protein contents (p>0.05). These results indicate
that N contained in biol was not used to increase protein content in
plants. Instead, the N administered to crop elds is used for plant
growth and could be perceived in the yield of crops. In accordance with
the aforementioned ndings, a study conducted by Marty et al. (2019),
indicated that N-fertilization did not exert a notable inuence on foliar
N concentrations in blueberries. This observation may be attributed
to a dilution eect resulting from the enhanced aboveground biomass
production associated with N-fertilization. However, the protein content
observed in this study is consistent with protein contents reported for
this type of forage (Mamani Paredes and Catacallapa Gutiérrez, 2018).
Conversely, the contents of ADF and NDF exhibited dierences
among treatments (p>0.05). A reduction in NDF and ADF in forage
is evident when higher concentrations of biol are administered
(p<0.05); except for T4 which shows similar results to T1 (p>0.05). In
a similar study, Coblentz et al. (2017) applied nitrogen as a chemical
fertilizer in the form of urea on oats cultivars and observed a linear
increase in NDF, ADF, lignin, and ash when increased doses of urea.
In contrast, the concentrations of non-brous carbohydrates (NFC)
and water-soluble carbohydrates (WSC) exhibited a linear decline
when increased urea doses. These changes were attributed to the
application of nitrogen or urea fertilizers. Nevertheless, these eects
are not observed in the present study. These results may be explained
by discrepancies in the application of fertilizer. In the present study
biol was applied via foliar spraying, whereas in the study evaluated
by Coblentz et al. (2017) the fertilizer was applied through irrigation
in a ooded furrow. In the context of irrigation, the direct application
of nutrients to soil, such as nitrogen (N), can be a viable approach.
Conversely, foliar fertilization allows a direct nutrient absorption by
plants, thereby mitigating the negative impacts of chemical fertilizers
on soil health (Niu et al., 2021). Therefore, this type of fertilization
may reduce the adverse eects of chemical fertilizer on roots and soils,
which can be positively associated with improvements in soil quality.
On the other hand, the results presented in this study indicated
that there are not changes in IVDMD (p>0.05); except for the value
obtained in T4 which presented a reduction in IVDMD (p<0.05). As
a matter of fact, these changes are in accordance with those obtained
in the concentration of structural carbohydrates as NDF, ADF and
lignin; T4 showed the highest concentrations of these cell-wall
carbohydrates and led to a reduction in the IVDMD. Furthermore, it is
well established that the digestibility of ruminant animals is reduced
when forage presents higher proportions of structural carbohydrates
(Van Saun, 2015).
Finally, foliar fertilization of biol resulted in increased yields
in fresh weight (FW) and dry weight (DW) (p<0.05). Similarly,
Montaño-Carrasco et al. (2017) observed comparable results with
organic fertilizers, reporting yields up to 15 t.ha
-1
of DW with a
combination of compost and inorganic fertilization. In another
study, Lama-Calvente et al. (2024) applied macroalgae digestate
as a biofertilizer and they reported a 76% augmentation in FW fo
Avena strogosa (black oats) grown in a greenhouse; in the same study,
authors applied inorganic fertilization and reported an 25% increase
in FW when compared to control.
As previously noted, the nitrogen content of biol did not impact
on the crude protein (CP) content of oats. However, the release of
nitrogen enhances rapid foliage growth, which makes more ecient the
energy absorption through the photosynthesis pathway and promoting
the carbon xation. Nitrogen application can yield improved growth
parameters, such as elevated seed and straw yields (Mondal et al.,
2024). While foliar spraying may be less eective than soil fertilization
due to nutrient limitations, nutrients can be absorbed through leaves
and transported to roots, enhancing root activity and delaying plant
senescence. This synergy between foliar fertilization and soil nutrient
absorption is a signicant agricultural practice (Niu et al., 2021).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Aguirre-Córdova et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254213
5-6 |
Table 4. Chemical composition and oat production (Avena sativa L.).
Variable T1 T2 T3 T4 T5
CP (%) 7.07±0.167
a
7.01±0.200
a
7.10±0.100
a
7.38±0.060
a
7.22±0.149
a
P (g.kg
-1
) 3.07±0.037
ab
2.91±0.133
ab
3.59±0.075
a
2.87±0.055
ab
2.56±0.026
b
N (g.kg
-1
) 11.5±0.416
a
11.8±0.164
a
11.3±0.275
a
11.2±0.554
a
11.3±0.462
a
N/P ratio 3.7±0.165
ab
4.0±0.213
ab
3.1±0.142
b
3.9±0.208
ab
4.42±0.154
a
NDF (%) 69.52±0.179
a
64.54±0.423
ab
63.21±0.194
ab
68.65±0.288
a
60.53±0.036
b
ADF (%) 45.44±0.255
a
43.17±0.407
a
41.11±0.164
ab
44.17±0.598
a
38.46±0.123
b
IVDMD (%) 55.66±0.975
a
57.18±0.94
a
55.03±0.568
ab
51.41±0.912
b
53.87±0.554
ab
Yield (t.ha
-1
; FW) 16.25±1.299
ab
16.16±1.922
b
24.33±1.878
ab
25.83±2.420
a
25.50±2.598
ab
Yield (t.ha
-1
; DW) 4.92±0.072
ab
4.65±0.947
b
5.83±0.457
ab
5.89±0.026
ab
7.05±0.258
a
WM= Note: Dierent superscript letters in the row indicate signicant dierences (p<0.05).
Conclusions
The application of biol via foliar fertilization resulted in a notable
enhancement in the yield and quality of oats in the study area. As
observed, foliar administration of biol did not aect protein content
in oats. However, it did increase the yield in fresh and dry weight.
Specically, 880 L.ha
-1
of biol increased the yield by 58 % and 43
% in FW and DW, respectively. Although biol application aected
DIVMS, it did not make it poor forage, which is highly desirable
when oats are utilized as animal feed. The application of biol has been
demonstrated to enhance the yield potential of crops. These ndings
indicate that biol may serve as a viable alternative to chemical
fertilizers, thereby promoting sustainable agricultural practices and
reducing environmental impact. Further research is recommended to
optimize the administration rates of biol and to assess its long-term
eects on soil health and crop productivity.
Litaratura cited
Alejo Rivera, J., Aedo Palacios, J., & Guerra-Galdo, E. (2020). New oat variety
(Avena sativa L.) multipurpose, resilient to climate change and short-
cycle. Agroindustrial Science, 10(3), 267-272. https://doi.org/10.17268/
agroind.sci.2020.03.07
ANKOM-Technology. (2008). Procedures for bre and in vitro analysis. https://
www.ankom.com/product-catalog/ankom-200-ber-analyzer.
AOAC. (2005). Ocial Methods of Analysis. Association of Ocial Analytical
Chemists International (16 ed.). Virginia,USA,1997.
Arias, A., Cruz L, J., Pantoja A, C., Contreras P, J., & Lopez R, M. (2021).
Rendimiento y calidad de Avena sativa asociada con Vicia sativa en la
región puna del Perú. Revista de Investigaciones Veterinarias del Perú,
32(5), e21339. https://doi.org/10.15381/rivep.v32i5.21339
Bouray, M., Moir, J. L., Lehto, N. J., Condron, L. M., Touhami, D., & Hummel,
C. (2021). Soil pH eects on phosphorus mobilization in the rhizosphere
of Lupinus angustifolius. Plant and Soil, 469(1), 387-407. https://doi.
org/10.1007/s11104-021-05177-4
Cabos Sánchez, J., Bardales Vásquez, C. B., León Torres, C. A., & Gil Ramírez,
L. A. (2019). Evaluación de las concentraciones de Nitrógeno, Fósforo y
Potasio del biol y biosol obtenidos a partir de estiércol de ganado vacuno
en un biodigestor de geomembrana de policloruro de vinilo. Arnaldoa, 26,
1165-1176. https://doi.org/10.22497/arnaldoa.263.26321
Coblentz, W. K., Akins, M. S., Cavadini, J. S., & Jokela, W. E. (2017). Net
eects of nitrogen fertilization on the nutritive value and digestibility
of oat forages. Journal of Dairy Science, 100(3), 1739-1750. https://doi.
org/10.3168/jds.2016-12027
Duan, L., Ju, Z., Ma, X., Pan, J., Mustafa, A. E.-Z. M. A., & Jia, Z. (2024).
Research on Enhancing the Yield and Quality of Oat Forage: Optimization
of Nitrogen and Organic Fertilizer Management Strategies. Agronomy,
14(7). https://doi.org/10.3390/agronomy14071406
Elbasiouny, H., Elbehiry, F., El-Ramady, H., & Brevik, E. C. (2020). Phosphorus
Availability and Potential Environmental Risk Assessment in Alkaline
Soils. Agriculture, 10(5). https://doi.org/10.3390/agriculture10050172
Enríquez Quiroz, J. F., Esqueda Esquivel, V. A., & Martínez Méndez, D.
(2021). Rehabilitation of degraded pastures in the tropics of Mexico.
Revista Mexicana de Ciencias Pecuarias, 12(0), 243-260. https://doi.
org/10.22319/rmcp.v12s3.5876
FAO, & IFA. (2002). Los fertilizantes y su uso. Organización de las Naciones
Unidas para la Agricultura y la Alimentación, Asociación Internacional
de la Industria de los Fertilizantes (4 ed.). Rome, Italy.
Ferro-Díaz, J. (2015). Manual revisado de métodos útiles en el muestreo y análisis
de la vegetación. Ecovida: Revista cientíca sobre diversidad biológica
y su gestión integrada, 5(1), 139-186. https://dialnet.unirioja.es/servlet/
articulo?codigo=9439153
Galyean, M. (2010). Laboratory procedure in animal nutrition research.
Department of Animal and Range Sciences. New Mexico, USA.
Gil Ramírez, L. A., Leiva Cabrera, F. A., Lezama Escobedo, M. K., Bardales
Vásquez, C. B., & León Torres, C. A. (2023). Biofertilizante “biol”:
caracterización física, química y microbiológica. Revista Alfa, 7(20), 336
- 345. https://doi.org/10.33996/revistaalfa.v7i20.219
González-Salas, U., Gallegos-Robles, M. Á., Vázquez-Vazquez, C., García-
Hernandez, J. L., Fortis-Hernández, M., & Mendoza-Retana, S. S.
(2018). Productividad de genotipos de maíz forrajero bajo fertilización
orgánica y propiedades físico-químicas del suelo. Revista Mexicana de
Ciencias Agrícolas, 9(20), 4331-4341. https://doi.org/10.29312/remexca.
v0i20.1002
Gutierrez Arce, F., Diaz Plasencia, S., Rojas Vásquez, Z., Vallejos Fernández, L.
A., & Gutierrez Arce, W. (2020). Elaboración de abono orgánico (Biol)
para su utilización en la producción de alfalfa (Medicago sativa v. vicus)
en Cajamarca.
REVISTA PERSPECTIVA, 20(4), 441-447. https://doi.
org/10.33198/rp.v20i2.00057
Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud,
J. A., Hossen, M. S., Mahmud J.A., Hossen S., Masud A.C., Moumita,
Fujita, M. (2018). Potassium: A Vital Regulator of Plant Responses
and Tolerance to Abiotic Stresses. Agronomy, 8(3), 31. https://doi.
org/10.3390/agronomy8030031
Henrichsen, L., Gonzalez da Silva, J. A., Ferrari Basso, N. C. F., Fachinetto,
J., Colet, C. d. F., Carvalo, I. R.,
Sgarbosa J., Lima D., Libardoni M.,
Coppetti K., Babesk M., Bandeira, W. J. A. (2022). Oat productivity by
root and foliar nitrogen uptake in cropping systems. Australian Journal of
Crop Science, 16(10), 1144–1151. https://doi.org/10.21475/ajcs.22.16.10.
p3634
Lama-Calvente, D. D., Mancilla-Leytón, J. M., Borja, R., & Fernández-
Rodríguez, M. J. (2024). Use of anaerobic digestate as biofertilizer:
Another step forward in the valorisation of the invasive brown macroalgae
Rugulopteryx okamurae. Scientia Horticulturae, 325, 112638. https://doi.
org/10.1016/j.scienta.2023.112638
Linares-Gabriel, A., López-Collado, C. J., Tinoco-Alfaro, C. A., Velasco-Velasco,
J., & López-Romero, G. (2016). Application of biol, inorganic fertilizer
and superabsorbent polymers in the growth of heliconia (Heliconia
psittacorum cv. Tropica). Revista Chapingo Serie Horticultura, XXIII(1),
35-48. https://doi.org/10.5154/r.rchsh.2016.02.004
Mamani Paredes, J., & Catacallapa Gutiérrez, F. H. (2018). Rendimiento y
calidad nutricional de avena forrajera en la región de Puno. Revista de
Investigaciones Altoandinas, 20(4), 385-400. https://doi.org/10.18271/
ria.2018.415
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254213 January-March. ISSN 2477-9409.
6-6 |
Marty, C., Lévesque, J.-A., Bradley, R. L., Lafond, J., & Paré, M. C. (2019).
Lowbush blueberry fruit yield and growth response to inorganic and
organic N-fertilization when competing with two common weed species.
PLOS ONE, 14(12), e0226619-e0226619. https://doi.org/10.1371/
journal.pone.0226619
Micro-Macro Publishing, I. (2014). Plant analysis handbook IV: A guiode to
sampling, preparation, analysis and interpretation for agronomic and
horticultural crops (G. M. Bryson & H. A. Milis, Eds.). Athens, Georgia,
USA.
Mondal, K., Jana, K., Saha, P., Paramanik, B., Mondal, R., Agrawal, R. K., Das,
B., & Kundu, A. (2024). Eect of nitrogen fertilization integrated with
bio-product on productivity, protability, and resource use eciency of
dual-purpose oats-residual green gram system. Journal of Plant Nutrition,
1-14. https://doi.org/10.1080/01904167.2024.2443112
Montaño-Carrasco, M., Hernández-Rodríguez, A., Martínez-Rosales, A., Ojeda-
Barrios, D., Núñez-Barrios, A., & Guerrero-Prieto, V. (2017). Producción
y contenido nutrimental en avena forrajera fertilizada con fuentes
químicas y orgánicas. Revista Fitotecnia Mexicana, 40(3), 317-324.
https://doi.org/10.35196/rfm.2017.3.317-324
Mortola, N., Romaniuk, R., Cosentino, V., Eiza, M., Carfagno, P., Rizzo, P., Bres,
P., Riera, N., Roba, M., Butti, M., Sainz. D., & Brutti L. (2019). Potential
Use of a Poultry Manure Digestate as a Biofertiliser: Evaluation of Soil
Properties and Lactuca sativa Growth. Pedosphere, 29(1), 60-69. https://
doi.org/10.1016/S1002-0160(18)60057-8
Mosier, S., Córdova, S. C., & Robertson, G. P. (2021). Restoring Soil Fertility
on Degraded Lands to Meet Food, Fuel, and Climate Security Needs via
Perennialization. Frontiers in Sustainable Food Systems, 5. https://doi.
org/10.3389/fsufs.2021.706142
Mukhtar, S., Mohammed, M. A., & Aznie, R. C. R. (2017). Temporal Variation and
Pollution Levels of Some Heavy Metals on Irrigated Land Along Airport
Road Kano State, Nigeria. Malaysian Journal of Applied Sciences,
2(2), 1-9.. https://journal.unisza.edu.my/myjas/index.php/myjas/article/
view/87
Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2021). Eects of Foliar
Fertilization: a Review of Current Status and Future Perspectives.
Journal of Soil Science and Plant Nutrition, 21(1), 104-118. https://doi.
org/10.1007/s42729-020-00346-3
Osman, K. T. (2013). Plant Nutrients and Soil Fertility Management. In K. T.
Osman (Ed.), Soils: Principles, Properties and Management (pp. 129-
159). Springer Netherlands. https://doi.org/10.1007/978-94-007-5663-
2_10
Otálora, G., Piñero, M. C., López-Marín, J., Varó, P., & del Amor, F. M. (2018).
Eects of foliar nitrogen fertilization on the phenolic, mineral, and amino
acid composition of escarole (Cichorium endivia L. var. latifolium). Scientia
Horticulturae, 239, 87-92. https://doi.org/10.1016/j.scienta.2018.05.031
Peñael Rodríguez, M. W., & Ticona G., D. (2019). Elementos nutricionales
en la producción de fertilizante biol con diferentes tipos de insumos y
cantidades de contenido ruminal de bovino - matadero municipal de La
Paz. Revista de Investigación e Innovación Agropecuaria y de Recursos
Naturales, 2(1), 87-90. https://riiarn.umsa.bo/index.php/RIIARn/article/
view/49
Peter, C. L., Da Silva, J. A. G., Carvalho, I. R., Magano, D. A., Conceição, G.
M., Alessi, O., da Rosa, J.A., Babeski, C.M., Diel, P., Sarturi, M.V.R.,
Heusner, L.B., & Zardin, N. G. (2024). Urea dissolution time in water
and eciency of foliar application in oat crops. Genetics and Molecular
Research, 23(1). https://doi.org/10.4238/gmr19171
SAS (2003) Statistical Analysis System Users Guide: Statistical Version. 8th
Edition, SAS Institute, Cary.
SEMARNAT. (2000). NOM-021-SEMARNAT-2000 Especicaciones de fertilidad,
salinidad y clasicación de suelos, estudio , muestreo y análisis. Ciudad
de Mexico: SEMARNAT. https://elsemarnat.info/normas/nom-021/
SIAP. (2013). Sistema de Información Agropecuaria y Pesquera. Cierre de
la producción agrícola por cultivo. https://www.gob.mx/siap/prensa/
sistema-de-informacion-agroalimentaria-de-consulta-siacon
SMN. (2024). Sistema Metreologico Nacional https://smn.conagua.gob.mx/tools/
RESOURCES/Normales_Climatologicas/Mensuales/dgo/mes10065.txt.
Souza, M. d. S., Silva, T. G. F., Souza, L. S. B., Jardim, A. M. d. R. F., Araújo Júnior,
G. d. N., & Alves, H. M. N. (2019). Practices for the improvement of the
agricultural resilience of the forage production in semiarid environment: a
review. Amazonian Journal of Plant Research, 3(4), 417–430. https://doi.
org/10.26545/ajpr.2019.b00051x
Torres-Moya, E., Ariza-Suárez, D., Baena-Aristizabal, C. D., Cortés-Gómez,
S., Becerra-Mutis, L., & Riaño-Hernández, C. A. (2016). Efecto de la
fertilización en el crecimiento y desarrollo del cultivo de la avena (Avena
sativa). Pastos y Forrajes, 39, 102-110. https://payfo.ihatuey.cu/index.
php?journal=pasto&page=article&op=view&path%5B%5D=1889
Van Saun, R. J. (2015). Basic small ruminant nutrition. American Association
of Bovine Practitioners Conference Proceedings, 139-145. https://doi.
org/10.21423/aabppro20153553
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary
Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation
to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://
doi.org/10.3168/jds.S0022-0302(91)78551-2
Vásquez, H. V., & Maraví, C. (2017). Efecto de fertilización orgánica (biol y
compost) en el establecimiento de morera (Morus alba L.). Revista de
Investigación en Ciencia y Biotecnología Animal, 1(1), 33-39. https://doi.
org/10.25127/ricba.20171.173