This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254210 January-March. ISSN 2477-9409.
6-6 |
also indicates that ETI adjusts to the gene for gen theory present in
rust disease. In the coee-H. vastratix pathosystem, resistance in the
coee plants is conditioned by at least nine dominant genes with main
eects (SH1-SH9) (Pires et al., 2020).
Results of the trial did not show a direct relationship between
latency period (PL) and infection grade (GI), some low values of PL
and high of GI were observed for some materials. Várzea et al. (2023)
named this intermediate compatibility and suggested that this might
be due to an incomplete resistance of the coee plants or to a less
aggressiveness of H. vastratix. Most of the components of incomplete
resistance are a quantitative extension of the scale used for the type
of reaction or infection grade (GI). These components, as well as the
GI, are related with the same basic criteria, such as the size of the
lesion, sporulation intensity, and appearance of chlorosis or necrosis.
Latency period is related to the size of the lesion; when fungal growth
is slow, sporulation is, generally, delayed and lesions will be smaller.
The types of reaction “0” (chlorosis without sporulation) or necrotic
spots will reduce sporulation intensity and duration (Várzea et al.,
2023).
Conclusion
The present study showed dierences in the reaction of the tested
coee cultivars to the three strains of H. vastratix used, based on the
number of rust lesions produced on the leaves and on the sporulated
area. In addition, it demonstrated dierence among the strains on the
severity of the disease induced.
Recommendation
Lack of information about races and pathotypes present in the
coee producer states in the country, leads to recommend planting the
three cultivars Castillo, Colombia 27 y Monteclaro together, in rust
endemic areas, since they were the ones with better outcome against
dierent strains in this study. Also, it is recommended to continue
research to identify other races and pathotypes present in the country
Acknowledgment
Authors thank to Postgrado de Agronomia of Universidad
Centroccidental Lisandro Alvarado, Barquisimeto, for allowing the
facilities to install this research, as well as to Dr. Pastora Querales for
her valuable advice to reach the objectives; to Oscar David Delgado
Ramírez for his technical support in adapting the area to set up the
trial; to INIA Tachira, to Ing Miguel Arizaleta and Ing. Daunarima
Renaud for donation of seed.
Cited literature
Avelino, J., & Rivas, G. (2013). La roya anaranjada del cafeto. HAL Id: hal-
01071036 https://hal.science/Hal-01071036/
Avelino, J., Allinne, C., Cerda, R., Willocquet, L., & Savary, S. (2018). Multiple-
disease system in coee: From crop loss assessment to sustainable
management. Annual Review of Phytopatholgy, 56, 611-635. https://doi.
org/10.1146/annurev-phyto-080417-050117
Burbano-Figueroa, O. (2020). Resistencia de plantas a patógenos: una revisión
sobre los conceptos de resistencia vertical y horizontal. Revista
Argentina de Microbiología, 52(3), 245-255. https://doi.org/10.1016/j.
ram.2020.04.006
Capucho, A., Teixeira Caixeta, E., Maciel-Zambolim, E., & Zambolim, L. (2009).
Herança da resistência do Híbrido de Timor UFV 443-03 à ferrugem-do-
cafeeiro. Pesquisa Agropecuaria Brasileira, 44(3), 276-282. https://doi.
org/10.1590/S0100-204X2009000300009
Coelho de Sousa, I., Nascimento, M., Nunes, G., Campana, A., Damião, C.,
Fonseca, F., Pires, D., Nogueira, K., Ferreira, C., Zambolim, L., &Teixeira,
E. (2020). Genomic prediction of leaf rust resistance to Arabica coee
using machine learning algorithms. Scientia Agricola, 78(4), e20200021.
http://doi.org/10.1590/1678-992X-2020-0021.
Dallangnol, L., & Vieira de Araujo Filho, J.V. (2018). Resistência de plantas a
microrganismos. En: L. J. Dallagnol (Ed.), Resistência genética de plantas
a patógenos (pp. 126–149). Editora UFPel. https://www.researchgate.net/
publication/329210299
Deepak, K., Hanumantha, B.T., & Sreenat, H.L. (2012). Viability of coee leaf
rust (Hemileia vastatrix) uredinospores stored at dierent temperatures.
Journal of Biotechnology and Biomaterials, 2, 143. http://doi.
org/10.4172/2155-952X.1000143
Eskes, A.B. (1983). Characterization of incomplete resistance to Hemileia vastatrix
in the Icatu coee population Coea arabica x Coea canephora.
Euphytica, 32(2), 649-658. https://doi.org/10.1007/BF00021477
InfoStat. 2020. InfoStat versión 2020. Grupo InfoStat, FCA, Universidad Nacional
de Córdoba, Argentina. http://www.infostat.con.ar
Lima, I.S., Freitas-Lopes, R., Ferreira D.S., S., Ferreira Maciel, Florez, J.C.,
Zambolim, E.M., Zambolim, L., & Teixeira C., E. (2022). Transcriptome
analysis uncovers the gene expression prole of Hemileia vastatrix (Race
XXXIII) during the interactions with resistant and susceptible coee.
Agronomy, 12(2), 444. https://doi.org/10.3390/agronomy12020444
Lizardo-Chavez, Cristian Y., Herrera-Zelaya, Diana A., Buezo-Mejía, Marco, &
Tróchez-Fernández, Hildebrando. (2022). Resistencia horizontal a la roya
del café (Hemileia vastatrix Berk. & Br.) de las variedades comerciales
de café de Honduras in Simposio: Evolución de la dinámica de plagas y
enfermedades y alternativas de manejo para la resiliencia de los cafetales.
https://www.researchgate.net/publication/360461721
Pires, D., Caixeta, E.T., Moreira, K.F., de Oliveira, A.C.B., de Freitas, K.N.P.,
Pereira, A.A., Rosado, R.D.S., Zambolim, L., & Cruz, C.D. (2021).
Marker-Assisted Pyramiding of Multiple Disease Resistance Genes in
Coee Genotypes (Coea arabica). Agronomy, 11, 1763. https://doi.
org/10.3390/agronomy11091763
Pires, D., Lima Castro, I. S., de Oliveira Mendes, T. A., Rodríguez Alves, D.,
Dugassa Barka, G., Rossi Marques Barreiros, Zambolim, L., Sussumu
Sakiyama N., & Teixeira Caixeta. E. (2020). Receptor-Like Kinase
(RLK) as a cantidate gene conferring resistance to Hemileia vastatrix in
coee. Scienta Agrícola, 78(6), e20200023. http://doi.org/10.1590/1678-
992X-2020-0023
Quiroga-Cardona, J. (2021). La resistencia incompleta del café a la
roya: una revisión. Revista Cenicafé, 72(2), e72208. https://doi.
org/10.38141/10778/72208
Ramírez-Poletto, E., Rodríguez G., D. A., Zambolim, L., & Granados, E. (2024).
Identication of phisiological strains of Hemileia vastatrix Táchira
State. Venezuela. Bioagro, 36(3), 277-286. https://doi.org/10.51372/
bioagro363.3
Rios, J. A. & Debona, D. (2018). Efeito epidemiológico da resistência de
hospedeiro. En: Dallagnol L. J. (Ed.). Resistência genética de plantas a
patógenos (pp: 126–149) Editora UFPel. Pelotas RS Brasil. https://www.
researchgate.net/publication/329210299
Schulze-Lerfert, P., & Panstruga, R. (2003). Establishment of biotrophy by
parasitic fungi and reprogramming of host cells for disease resistance.
Annual Review Phytopathology, 41, 641–667. http://doi.org/10.1146/
annurev.phyto.41.061002.083300
Silva, M.d.C., Guerra-Guimarães, L., Diniz, I., Loureiro, A., Azinheira, H., Pereira,
A.P., Tavares, S., Batista, D., & Várzea, V. (2022). An overview of the
mechanisms involved in coee-Hemileia vastatrix interactions: Plant and
pathogen perspectives. Agronomy, 12(2), 326.https://doi.org/10.3390/
agronomy12020326
Talhinhas, P., Batista, D., Diniz, I., Vieira, A., Silva, D.N., Loureiro, A., Tavares,
S., Pereira, A.P., Azinheira, H.G., Guerra- Guimarães, L., Várzea, V., &
Silva d.C., M. (2017). The coee leaf rust pathogen Hemileia vastatrix:
One and a half centuries around the tropics. Molecular Plant Pathology,
18(8), 1039–1051. https://doi.org/10.1111/mpp.12512
Várzea, V., Pereira, A.P., & Silva, M.d.C. (2023). Screening for resistance to coee
Leaf Rust. En: I.L. Ingelbrecht, M.d.C.L. Silva & J. Jankowicz-Cieslak,
(Eds.), Mutation breeding in coee with special reference to Leaf Rust
(pp. 209-224).Springer. https://doi.org/10.1007/978-3-662-67273-0_15