This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254207 January-March. ISSN 2477-9407.
6-7 |
Figure 5. Porosity of the cross-sections of the commercial potato
sample (FPS) and of the sticks with quinoa and prickly
pear our included in their formulation.
As can be seen, the porosity of the commercial crisps is much
lower than the porosity of the cross-section of the substitute samples.
This is probably due to the fact that the extrusion process, using
high pressure and temperature, generates an aerated and expanded
structure in the products obtained (Almendares et al., 2021).
Conclusions
It is possible to obtain crisp substitutes through extrusion
technology, incorporating quinoa our and prickly pear shell our
into the potato our in the initial formulation, which allows low
oil absorption rates during frying, opening up the possibility of
not drastically changing the consumption habits of the population,
oering them a healthier product.
Acknowledgements
The authors acknowledge the nancial support of the Fondo de
Desarrollo Universitario de la Universidad Nacional del Altiplano de
Puno, year 2023, for the execution and publication of this research
work.
Literature cited
Abd Rahman, N. A., Abdul Razak, S. Z., Lokmanalhakim, L. A., Taip, F. S., &
Mustapa Kamal, S. M. (2017). Response surface optimization for hot
air-frying technique and its eects on the quality of sweet potato snack.
Journal of Food Process Engineering, 40(4), e12507. https://doi.org/
https://doi.org/10.1111/jfpe.12507
Adedeji, A. A., & Ngadi, M. (2018). Impact of freezing method, frying and storage
on fat absorption kinetics and structural changes of parfried potato.
Journal of Food Engineering, 218, 24–32. https://doi.org/https://doi.
org/10.1016/j.jfoodeng.2017.08.024
Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and Extruded
Products: Changes in Quality Attributes as Aected by Extrusion Process
Parameters: A Review. Critical Reviews in Food Science and Nutrition,
56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568
Al-Khusaibi, M., Ahmad Tarmizi, A. H., & Niranjan, K. (2015). On the Possibility
of Nonfat Frying using Molten Glucose. Journal of Food Science, 80(1),
E66–E72. https://doi.org/https://doi.org/10.1111/1750-3841.12713
Almendares, L., García, V. A., & Román, J. M. (2021). Development of an extruded
food product similar to fried potatoes, based on by-products of potatoes
and rice. physicochemical and microbiological evaluation. Food Science
and Technology, 41(2), 359–364. https://doi.org/10.1590/fst.03820
Beals, K. A. (2019). Potatoes, Nutrition and Health. American Journal of Potato
Research, 96(2), 102–110. https://doi.org/10.1007/s12230-018-09705-4
Bhuiyan, M. H. R., & Ngadi, M. (2024). Post-fry oil distribution in batter
coated fried foods. LWT, 194, 115819. https://doi.org/10.1016/J.
LWT.2024.115819
Bouazizi, S., Montevecchi, G., Antonelli, A., & Hamdi, M. (2020). Eects
of prickly pear (Opuntia cus-indica L.) peel our as an innovative
ingredient in biscuits formulation. LWT - Food Science and Technology,
124, 109155. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109155
Daniloski, D., D’Cunha, N. M., Speer, H., McKune, A. J., Alexopoulos, N.,
Panagiotakos, D. B., Petkoska, A. T., & Naumovski, N. (2022). Recent
developments on Opuntia spp., their bioactive composition, nutritional
values, and health eects. Food Bioscience, 47, 101665. https://doi.org/
https://doi.org/10.1016/j.fbio.2022.101665
Dehghannya, J., & Ngadi, M. (2023). The application of pretreatments for
producing low-fat fried foods: A review. Trends in Food Science &
Technology, 140, 104150. https://doi.org/https://doi.org/10.1016/j.
tifs.2023.104150
Esan, T. A., Sobukola, O. P., Sanni, L. O., Bakare, H. A., & Munoz, L. (2015).
Process optimization by response surface methodology and quality
attributes of vacuum fried yellow eshed sweetpotato (Ipomoea batatas
L.) chips. Food and Bioproducts Processing, 95, 27–37. https://doi.org/
https://doi.org/10.1016/j.fbp.2015.03.008
Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and
mass transfer in immersion frying. I, model development. Journal
of Food Engineering, 29(2), 211–226. https://doi.org/https://doi.
org/10.1016/0260-8774(95)00072-0
Ghaderi, A., Dehghannya, J., & Ghanbarzadeh, B. (2018). Momentum, heat and
mass transfer enhancement during deep-fat frying process of potato
strips: Inuence of convective oil temperature. International Journal of
Thermal Sciences, 134
, 485–499. https://doi.org/https://doi.org/10.1016/j.
ijthermalsci.2018.08.035
Grahl, S., Palanisamy, M., Strack, M., Meier-Dinkel, L., Toep, S., & Mörlein,
D. (2018). Towards more sustainable meat alternatives: How technical
parameters aect the sensory properties of extrusion products derived
from soy and algae. Journal of Cleaner Production, 198, 962–971. https://
doi.org/https://doi.org/10.1016/j.jclepro.2018.07.041
Gutiérrez-Silva, G., Vásquez-Lara, F., Heredia-Sandoval, N. G., & Islas-Rubio,
A. R. (2023). Eect of High-Protein and High-Fiber Breaders on Oil
Absorption and Quality Attributes in Chicken Nuggets. Foods, 12(24),
4463. https://doi.org/10.3390/foods12244463
Guy, R. (2001). Extrusion Cooking: Technologies and Applications (R. Guy, Ed.;
Elsevier, pp. 161–181). Woodhead Publishing Series in Food Science,
Technology and Nutrition.
Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of
mechanical and optical properties of French fries obtained by hot air-
frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.
org/https://doi.org/10.1016/j.lwt.2014.02.038
Hu, C., He, Y., Zhang, W., & He, J. (2024). Potato proteins for technical
applications: Nutrition, isolation, modication and functional properties
- A review. Innovative Food Science & Emerging Technologies, 91,
103533. https://doi.org/https://doi.org/10.1016/j.ifset.2023.103533
Martin, A., Osen, R., Karbstein, H. P., & Emin, M. A. (2021). Linking Expansion
Behaviour of Extruded Potato Starch/Rapeseed Press Cake Blends to
Rheological and Technofunctional Properties. Polymers, 13(2), 215.
https://doi.org/10.3390/polym13020215
Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis
application for identication Quinoa seeds (Chenopodium quinoa Willd)
geographical provenance. LWT - Food Science and Technology, 43(2),
238–246. https://doi.org/10.1016/j.lwt.2009.07.010
Medina, W. T., de la Llera, A. A., Condori, J. L., Aguilera, J. M., Llera, A. De, &
Condori, J. L. (2011). Physical Properties and Microstructural Changes
during Soaking of Individual Corn and Quinoa Breakfast Flakes.
Journal of Food Science, 76(3), 254–265. https://doi.org/10.1111/j.1750-
3841.2011.02054.x
Mohamed Latif, N. A., Mat Ropi, A. A., Dos Mohamad, A. M., & Shaharuddin, S.
(2020). Fat reduction and characteristic enhancement of edible composite
coating (Pectin-Maltodextrin) on fried potato chips. Materials Today:
Proceedings, 31, A79–A84. https://doi.org/https://doi.org/10.1016/j.
matpr.2020.12.659
Ochoa-Velasco, C. E., Palestina-Rivera, J., Ávila-Sosa, R., Navarro-Cruz, A. R.,
Vera-López, O., Lazcano-Hernández, M. A., & Hernández-Carranza, P.
(2022). Use of green (Opuntia megacantha) and red (Opuntia cus-indica
L.) cactus pear peels for developing a supplement rich in antioxidants,
ber, and Lactobacillus rhamnosus. Food Science and Technology, 42.
https://doi.org/10.1590/fst.101421
Parikh, A., & Takhar, P. S. (2016). Comparison of Microwave and Conventional
Frying on Quality Attributes and Fat Content of Potatoes. Journal of Food
Science, 81(11), E2743–E2755. https://doi.org/10.1111/1750-3841.13498
Rahimi, J., Adewale, P., Ngadi, M., Agyare, K., & Koehler, B. (2017). Changes
in the textural and thermal properties of batter coated fried potato strips
during post frying holding. Food and Bioproducts Processing, 102, 136–
143. https://doi.org/https://doi.org/10.1016/j.fbp.2016.12.013