This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254204 January-March. ISSN 2477-9407.
6-6 |
Photogrammetry, Thermal Imaging, and Computer Vision Can Derive
Cost-Eective Ecological Indicators for Habitat Assessment. Remote
Sensing, 16(6), 1081. https://doi.org/10.3390/RS16061081/S1
Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., &
Enciso, J. (2021). Digital Terrain Models Generated with Low-Cost
UAV Photogrammetry: Methodology and Accuracy. ISPRS International
Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/
IJGI10050285
Kangas, A., Gobakken, T., Puliti, S., Hauglin, M., & Næsset, E. (2018). Value of
airborne laser scanning and digital aerial photogrammetry data in forest
decision making. Silva Fennica, 52(1), 19. https://doi.org/10.14214/
SF.9923
Kašpar, V., Hederová, L., Macek, M., Müllerová, J., Prošek, J., Surový, P., Wild,
J., & Kopecký, M. (2021). Temperature buering in temperate forests:
Comparing microclimate models based on ground measurements with
active and passive remote sensing. Remote Sensing of Environment, 263,
112522. https://doi.org/10.1016/J.RSE.2021.112522
Kissling, W. D., Shi, Y., Koma, Z., Meijer, C., Ku, O., Nattino, F., Seijmonsbergen,
A. C., & Grootes, M. W. (2022). Laserfarm – A high-throughput workow
for generating geospatial data products of ecosystem structure from
airborne laser scanning point clouds. Ecological Informatics, 72, 101836.
https://doi.org/10.1016/J.ECOINF.2022.101836
Kovanič, Ľ., Topitzer, B., Peťovský, P., Blišťan, P., Gergeľová, M. B., & Blišťanová,
M. (2023). Review of Photogrammetric and Lidar Applications of UAV.
Applied Sciences, 13(11), 6732. https://doi.org/10.3390/APP13116732
Kudela, P., Palcak, M., Zabovska, K., & Bucko, B. (2020). Integration
of photogrammetry within laser scanning approach. 2020 43rd
International Convention on Information, Communication and
Electronic Technology, MIPRO, 1691–1694. https://doi.org/10.23919/
MIPRO48935.2020.9245297
Lin, Y., Filin, S., Billen, R., & Mizoue, N. (2023). Co-developing an international
TLS network for the 3D ecological understanding of global trees:
System architecture, remote sensing models, and functional prospects.
Environmental Science and Ecotechnology, 16, 100257. https://doi.
org/10.1016/J.ESE.2023.100257
Mislan, K. A. S., & Helmuth, B. (2008). Microclimate. Encyclopedia of Ecology,
5, 389–2393. https://doi.org/10.1016/B978-008045405-4.00520-6
Moon, D., Chung, S., Kwon, S., Seo, J., & Shin, J. (2019). Comparison and
utilization of point cloud generated from photogrammetry and laser
scanning: 3D world model for smart heavy equipment planning.
Automation in Construction, 98, 322–331. https://doi.org/10.1016/J.
AUTCON.2018.07.020
Nakamura, A., Kitching, R. L., Cao, M., Creedy, T. J., Fayle, T. M., Freiberg,
M., Hewitt, C. N., Itioka, T., Koh, L. P., Ma, K., Malhi, Y., Mitchell,
A., Novotny, V., Ozanne, C. M. P., Song, L., Wang, H., & Ashton, L.
A. (2017). Forests and Their Canopies: Achievements and Horizons
in Canopy Science. Trends in Ecology and Evolution, 32(6), 438–451.
https://doi.org/10.1016/J.TREE.2017.02.020
Nitoslawski, S. A., Wong-Stevens, K., Steenberg, J. W. N., Witherspoon,
K., Nesbitt, L., & Konijnendijk van den Bosch, C. C. (2021). The
Digital Forest: Mapping a Decade of Knowledge on Technological
Applications for Forest Ecosystems. Earth’s Future, 9(8). https://doi.
org/10.1029/2021EF002123
Nuijten, R. J. G., Coops, N. C., Theberge, D., & Prescott, C. E. (2023). Estimation
of ne-scale vegetation distribution information from RPAS-generated
imagery and structure to aid restoration monitoring. Science of Remote
Sensing, 9, 100114. https://doi.org/10.1016/J.SRS.2023.100114
Parent, J. R., & Volin, J. C. (2014). Assessing the potential for leaf-o LiDAR
data to model canopy closure in temperate deciduous forests. ISPRS
Journal of Photogrammetry and Remote Sensing, 95, 134–145. https://
doi.org/10.1016/J.ISPRSJPRS.2014.06.009
Pérez-Cabello, F., Montorio, R., & Alves, D. B. (2021). Remote sensing
techniques to assess post-re vegetation recovery. Current Opinion in
Environmental Science and Health, 21, 100251. https://doi.org/10.1016/J.
COESH.2021.100251
Puliti, S., Dash, J. P., Watt, M. S., Breidenbach, J., & Pearse, G. D. (2020). A
comparison of UAV laser scanning, photogrammetry and airborne laser
scanning for precision inventory of small-forest properties. Forestry: An
International Journal of Forest Research, 93(1), 150–162. https://doi.
org/10.1093/FORESTRY/CPZ057
Qi, Y., Coops, N. C., Daniels, L. D., & Butson, C. R. (2022). Comparing tree
attributes derived from quantitative structure models based on drone
and mobile laser scanning point clouds across varying canopy cover
conditions. ISPRS Journal of Photogrammetry and Remote Sensing, 192,
49–65. https://doi.org/10.1016/J.ISPRSJPRS.2022.07.021
Qubaa, A. R., Thannoun, R. G., & Mohammed, R. M. (2022). UAVs/drones for
photogrammetry and remote sensing: Nineveh archaeological region as
a case study. World Journal of Advanced Research and Reviews, 14(3),
358–368. https://doi.org/10.30574/WJARR.2022.14.3.0539
Smith-Tripp, S. M., Eskelson, B. N. I., Coops, N. C., & Schwartz, N. B. (2022).
Canopy height impacts on the growing season and monthly microclimate
in a burned forest of British Columbia, Canada. Agricultural
and Forest Meteorology, 323, 109067. https://doi.org/10.1016/J.
AGRFORMET.2022.109067
Ulrey, C., Quintana-Ascencio, P. F., Kauman, G., Smith, A. B., & Menges,
E. S. (2016). Life at the top: Long-term demography, microclimatic
refugia, and responses to climate change for a high-elevation southern
Appalachian endemic plant. Biological Conservation
, 200, 80-92. https://
doi.org/10.1016/j.biocon.2016.05.028
Villani, L., Castelli, G., Sambalino, F., Almeida Oliveira, L. A., & Bresci, E.
(2021). Inuence of trees on landscape temperature in semi-arid agro-
ecosystems of East Africa. Biosystems Engineering, 212, 185–199.
https://doi.org/10.1016/J.BIOSYSTEMSENG.2021.10.007
Yépez-Rincón, F. D., Luna-Mendoza, L., Ramírez-Serrato, N. L., Hinojosa-
Corona, A,. & Ferriño-Fierro, A. L. (2021). Assessing vertical structure
of an endemic forest in succession using terrestrial laser scanning (TLS).
Case study: Guadalupe Island. Remote Sensing of Environment, 263,
112563. https://doi.org/10.1016/J.RSE.2021.112563
Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019).
Advances in Microclimate Ecology Arising from Remote Sensing. Trends
in Ecology and Evolution, 34(4), 327–341. https://doi.org/10.1016/J.
TREE.2018.12.012