
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(3): e244127 July-September. ISSN 2477-9407.
6-6 |
Table 4. Thermodynamic parameters for red and yellow onion.
T
(°C)
ΔH
(kJ mol
-1
)
Allium cepa L.
ΔS
(kJ mol
-1
K
-1
)
Allium cepa L.
ΔG
(kJ mol
-1
)
Allium cepa L.
Noam Centrum Noam Centrum Noam Centrum
60 76,9
138,9
-48,3
-486,1
93,0
30,1
70 76,8
138,8
-48,5
-486,3
93,5
30,6
80 76,7
138,7
-48,8
-486,6
94,0
31,1
However, no statistically signicant disparities were found in
the values of the entropy dierential (∆S) for Allium cepa L., variety
Noam (p-value = 0.832) and Centrum (p-value = 0.828) when varying
the drying temperatures (60, 70, and 80) ºC, for a condence level
of 95 %. However, when comparing between varieties, statistically
signicant disparities (p-value = 0.000) were found in the ∆S, being
−48.4 ± 0.3 kJmol
-1
K
-1
for the Noam variety and −486.4 ± 0.2 kJ.mol
-
1.
K
-1
for the Centrum variety, as detailed in Table 4. Therefore, it can
be observed that the values obtained for ∆H, ∆S are lower than those
recorded by Braga da Silva et al., (2019).
In the Gibbs free energy dierential, no statistically signicant
disparities were found for Allium cepa L., variety Noam (p-value
= 0.923) and Centrum (p-value = 0.885) when varying the drying
temperatures (60, 70 and 80) °C, for a condence level of 95 %.
However, when comparing between varieties, statistically signicant
disparities (p-value = 0.000) were found in the Gibbs free energy
dierential, being 94.0 ± 0,1 kJ.mol
-1
for the Noam variety and 30.1
± 0,2 kJ.mol
-1
for the Centrum variety, as detailed in Table 4. These
results are lower than those published by Braga da Silva et al. (2019)
on pretreated Piper aduncum leaves (108.955 y 113.889 kJ.mol
-1
), and
higher than those reported by Quequeto et al. (2019) on laurel leaves
(53.038 kJ.mol
-1
).
Conclusions
The Midilli model was determined to be the most appropriate
model to represent the experimental data on the drying process of
Allium cepa L., applicable to the Noam and Centrum varieties
regardless of variations in drying temperature. Furthermore, increasing
the temperature during the drying process signicantly reduced the
time required to remove water from both varieties of Allium cepa L.
and caused an increase in the eective water diusion coecient.
However, this increase in temperature did not signicantly aect
the values of enthalpy dierential, entropy, and Gibbs free energy,
demonstrating that these thermodynamic properties remain relatively
stable under the drying conditions studied.
Literatura citada
Attkan, A., Alam, M., Raleng, A., & Yadav, Y. K. (2021). Drying Kinetics of Onion
(Allium cepa L.) Slices using Low-humidity Air-assisted Hybrid Solar
Dryer. Journal of Agricultural Engineering (India), 58(3). Doi:10.52151/
jae2021581.1750
Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf
drying: Mechanism and inuencing parameters, drying methods, nutrient
preservation, and mathematical models. Renewable and Sustainable
Energy Reviews, 90, 536–556. Doi: 10.1016/j.rser.2018.04.002
Bosco, D., Roche, L. A., Della Rocca, P. A., & Mascheroni, R. H. (2018).
Osmodehidrocongelación de batata fortifcada con Zinc y Calcio.
INNOTEC, 15. Doi: 10.26461/15.05
Braga da Silva, N. C., Ferreira dos Santos, S. G., Pereira da Silva, D., Silva, I.
L., & Souza Rodovalho, R. (2019). Drying kinetics and thermodynamic
properties of boldo leaves (Plectranthus barbatus Andrews). Jaboticabal,
47(1), 1–7. Doi:10.15361/1984-5529.2019v47n1p1-7
Chakraborty, R., Kashyap, P., Gadhave, R. K., Jindal, N., Kumar, S., Guiné,
R. P. F., Mehra, R., & Kumar, H. (2023). Fluidized Bed Drying of
Wheatgrass: Eect of Temperature on Drying Kinetics, Proximate
Composition, Functional Properties, and Antioxidant Activity. Foods,
12(8). Doi:10.3390/foods12081576
Compaoré, A., Putranto, A., Dissa, A. O., Ouoba, S., Rémond, R., Rogaume, Y. ,
Zoulalian, A., Béré, A., & Koulidiati, J. (2019). Convective drying of
onion: modeling of drying kinetics parameters.
Journal of Food Science
and Technology, 56(7), 3347–3354. Doi:10.1007/s13197-019-03817-3
Fernando, J. A. K. M., & Amarasinghe, A. D. U. S. (2016). Drying kinetics
and mathematical modeling of hot air drying of coconut coir pith.
SpringerPlus, 5(1). Doi:10.1186/s40064-016-2387-y
Gasparin, P. P., Christ, D., & Coelho, S. R. M. (2017). Drying of Mentha piperita
leaves on a xed bed at dierent temperatures and air velocities. Revista
Ciência Agronômica, 48(2). Doi:10.5935/1806-6690.20170028
Jafari, S. M., Ganje, M., Dehnad, D., & Ghanbari, V. (2016). Mathematical, Fuzzy
Logic and Articial Neural Network Modeling Techniques to Predict
Drying Kinetics of Onion. Journal of Food Processing and Preservation,
40(2), 329–339. Doi:10.1111/jfpp.12610
Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020).
Conventional method and microwave drying kinetics of Laurus nobilis
leaves: eects on phenolic compounds and antioxidant activity. Brazilian
Journal of Food Technology, 23. Doi:10.1590/1981-6723.21419
Lemus-Mondaca, R., Vega-Gálvez, A., Moraga, N. O., & Astudillo, S. (2015).
Dehydration of Stevia rebaudiana Bertoni Leaves: Kinetics, Modeling
and Energy Features. Journal of Food Processing and Preservation,
39(5), 508–520. Doi:10.1111/jfpp.12256
Siqueira Martins, E. A., Lage, E. Z., Duarte Goneli, A. L., Hartmann Filho, C. P.,
& Lopes, J. G. (2015). Drying kinetics of Serjania marginata Casar leaves.
Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238–244.
Doi:10.1590/1807-1929/agriambi.v19n3p238-244
Pasechny D., Smotraeva I., and Balanov P. (2023). Phenolic Compounds from
onion husk (Allium cepa L.): Mode of Extraction. BIO Web of Conferences
67, 03017E DOI: Doi:10.1051/bioconf/20236703017
Przeor, M., Flaczyk, E., Beszterda, M., Szymandera-Buszka, K. E., Piechocka,
J., Kmiecik, D., Szczepaniak, O., Kobus-Cisowska, J., Jarzębski, M., &
Tylewicz, U. (2019). Air-drying temperature changes the content of the
phenolic acids and avonols in white mulberry (Morus alba L.) leaves.
Ciência Rural, 49(11). Doi:10.1590/0103-8478cr20190489
Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A.,
Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A.
L. D., & Martins, E. A. S. (2019). Mathematical Modeling of Thin-Layer
Drying Kinetics of Piper aduncum L. Leaves. Journal of Agricultural
Science, 11(8), 225. Doi:10.5539/jas.v11n8p225
Revaskar, V. A., Pisalkar, P. S., Pathare, P. B., & Sharma, G. P. (2014). Dehydration
kinetics of onion slices in osmotic and air convective drying process. Res.
Agr. Eng., 60(3), 92–99. Doi:10.17221/22/2012-RAE
Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., &
Vidal, V. M. (2015). Drying kinetics and eective diusivity in jenipapo
sheets (Genipa americana L.). Genipa americana L.). Revista Brasileira
de Plantas Medicinais, 17(4 suppl 2), 953–963. Doi:10.1590/1983-
084X/14_106
Silva-Paz, R. J., Mateo-Mendoza, D. K., & Eccoña-Sota, A. (2023). Mathematical
Modelling of Muña Leaf Drying (Minthostachys mollis) for
Determination of the Diusion Coecient, Enthalpy, and Gibbs Free
Energy. ChemEngineering, 7(3). Doi:10.3390/chemengineering7030049
Silveira Dorneles, L. do N., Duarte Goneli, A. L., Lima Cardoso, C. A., Bezerra
da Silva, C., Hauth, M. R., Cardoso Obá, G., & Schoeninger, V. (2019).
Eect of air temperature and velocity on drying kinetics and essential
oil composition of Piper umbellatum L. leaves. Industrial Crops and
Products, 142, 111846. Doi:10.1016/j.indcrop.2019.111846
Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of
convective, vacuum and microwave drying of intact and brined onion
slices. Journal of Food Processing and Preservation, 41(6), e13239.
Doi:10.1111/jfpp.13239