© The Authors, 2024, Published by the Universidad del Zulia*Corresponding author:mnarrea@lamolina.edu.pe
Keywords:
Biodiversity
Natural enemies
Conservation biological control
Entomofauna present in plant shelters in a vineyard var. Crimson Seedless in Ica-Peru
Entomofauna presente en refugios vegetales en un campo de vid var. Crimson Seedless en Ica-Perú
Entomofauna em faixas de plantas silvestres em um campo de vinha var. Crimson Seedless em Ica-
Peru
Mónica Narrea-Cango
1
*
Luz Gómez Pando
2
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244119
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v41.n2.09
Crop production
Associate editor: Dra. Lilia Urdaneta
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Programa de Doctorado en Agricultura Sustentable.
Universidad Nacional Agraria La Molina. Av. La Molina s/n,
La Molina, Lima, Perú.
2
Departamento Académico de Fitotecnia. Facultad de
Agronomía. Universidad Nacional Agraria La Molina. Av.
La Molina s/n, La Molina, Lima, Perú.
Received: 01-03-2024
Accepted: 19-05-2024
Published: 11-06-2024
Abstract
The use of chemical pesticides to control pests also aects
benecial insects, so it is necessary to implement mechanisms
that allow them to be protected and promote their development.
In the present investigation, three plant shelters were installed to
identify their entomofauna and determine the plant species with
the potential to host biological controllers of grapevine pests. The
study was carried out in the 2020-21 growing season, with seven
plant species to make up three plant shelters (A, B, and C) that were
installed on the edges of a vineyard of the Crimson Seedless variety
in Ica, Peru. In total, 1,209 insects were reported, in six orders, nine
families, and fteen species; the most abundant were pollinators,
followed by phytophagous, predators, and some parasitoids. There
were no statistical dierences between the shelters in terms of
the abundance of parasitoids and pollinators, but there were in
predators and phytophagous specically between shelters A and B
with C. Shelters A and B, which included the fennel Foeniculum
vulgare Mill., stood out for having a larger population of predators,
including Chrysoperla externa (Hagen), the main controller of
the “vine mealybug” (Planococcus spp.). The importance of plant
shelters was demonstrated and their implementation in vineyards
is recommended to promote biological control and contribute to
integrated pest management in this crop.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244119 April-June. ISSN 2477-9407.
2-6 |
Resumen
El uso de plaguicidas químicos para controlar plagas, afecta
también a los insectos benécos, por lo que es necesario implementar
mecanismos que permitan protegerlos y favorecer su desarrollo. En
la presente investigación se instalaron tres refugios vegetales con el
propósito de identicar su entomofauna y determinar las especies
vegetales con potencial para albergar controladores biológicos de
plagas de la vid. El estudio se realizó en la campaña agrícola 2020-21,
con siete especies vegetales para conformar tres refugios (A, B y C)
que fueron instalados en los bordes de un campo de vid de la variedad
Crimson Seedless en Ica, Perú. En total se reportaron 1.209 insectos,
en seis órdenes, nueve familias y 15 especies; los más abundantes
fueron los polinizadores, seguidos de tófagos, predadores y algunos
parasitoides. No hubo diferencias estadísticas entre los refugios en
cuanto a la abundancia de parasitoides y polinizadores, pero si en
predadores y tófagos especícamente entre los refugios A y B con
el C. Los refugios A y B que incluían al hinojo Foeniculum vulgare
Mill., destacaron por albergar mayor población de predadores, entre
ellos destaca Chrysoperla externa (Hagen), principal controlador de
la “cochinilla harinosa de la vid” (Planococcus spp.). Se demostró
la importancia de los refugios vegetales y se recomienda su
implementación en los viñedos para fomentar el control biológico y
contribuir al manejo integrado de plagas en este cultivo.
Palabras clave: biodiversidad, enemigos naturales, control biológico
conservativo.
Resumo
A utilização de pesticidas químicos para controlo de pragas
também afeta os insetos benécos, pelo que é necessário
implementar mecanismos que permitam protegê-los e promover
o seu desenvolvimento. Na presente investigação foram instalados
três faixas de plantas silvestres com o objetivo de identicar a sua
entomofauna e determinar as espécies vegetais com potencial para
acolher controladores biológicos de pragas da videira. O estudo
foi realizado na campanha agrícola 2020-21, com sete espécies de
plantas para compor três faixas de plantas silvestres (A, B e C) que
foram instalados nas bordas de um campo de vinha da variedade
Crimson Seedless em Ica, Peru. No total foram relatados 1.209
insetos, distribuídos em seis ordens, nove famílias e 15 espécies; os
mais abundantes foram os polinizadores, seguidos pelos lófagos,
predadores e alguns parasitoides. Não houve diferenças estatísticas
entre os faixas de plantas silvestres em termos de abundância de
parasitoides e polinizadores, mas houve em predadores e lófagos
especicamente entre os faixas de plantas silvestres A e B com C.
Destacaram-se os faixas de plantas silvestres A e B, que incluíam
a erva-doce Foeniculum vulgare Mill., por seu hospedeiro uma
maior população de predadores, dentre eles destaca-se Chrysoperla
externa (Hagen), principal controladora da “cochonilha da videira”
(Planococcus spp.). Foi demonstrada a importância dos abrigos
vegetais e recomenda-se a sua implementação nas vinhas para
promover o controlo biológico e contribuir para a gestão integrada de
pragas nesta cultura.
Palavras-chave: biodiversidade, inimigos naturais, controle
biológico por conservação.
Introduction
The grapevine is a very important crop in Peru, which is seriously
attacked by several pests such as woodlouse, thrips, and mites,
among others (Cáceres & Julca, 2018); to control them, chemical
pesticides are generally used, which at the same time aect and
reduce the population of biological controllers, aecting the natural
and applied biological control of the crop (Vázquez et al.,2008).
Therefore, promoting actions that favor the presence and growth of
benecial fauna is necessary for the development of the crop. One
of these actions is the planting of plants that provide food, shelter,
and protection for biological controllers (Landis et al., 2000); and
especially in vineyards, the planting of owering plants is preferable,
because it allows maintaining and increasing the richness, diversity,
and abundance of predators and pollinators (López et al., 2019).
The management of agricultural habitat through the planting of
varied plants or “plant shelters” then becomes one more strategy of
integrated pest management (González-Chang et al., 2019).
Plant shelters near vineyards are benecial (Altieri et al., 2007;
López et al., 2019), as long as the most suitable plants are selected
to ensure the presence of biological controllers (Fiedler & Landis,
2007) and do not promote the development of pests. Asteraki et al.
(2004) assert that diverse vegetation generates favorable conditions
for benecial entomofauna and López et al. (2003) point out that the
management of native (wild) plants can improve natural pest control.
In Peru, there are few studies on the use of plant shelters and none
on grapevines, so the objective of this work was to study three plant
shelters, identify their entomofauna, and determine the plant species
with the potential to host biological controllers of grapevine pests.
Materials and methods
The study was carried out in the surroundings of a vineyard of the
Crimson Seedless variety, located in Ica-Peru, at 75°42’0.00” south
and 14°0’0.00” west at an altitude of 535 m.a.s.l.; between march
2020 and march 2021 (2020-2021 growing season).
Selection of plant species
A bibliographic search of angiosperms with reports of harboring
biological controllers and that they met the following criteria was
carried out to make their use as a plant shelter more feasible in case
of positive results:
1: Available in nurseries or present wild in crop elds.
2: Low water requirement to withstand the grapevine dormancy
period.
3: Use as aromatic, medicinal, forage, or ornamental plants.
4: Not considered weeds or main hosts of common grapevine
pests.
Based on the established criteria, the following species were
chosen, whose distribution in the plant shelters is detailed in the
following table.
Installation of plant shelters
The plants were sown in seedbeds from commercial seeds and
when they reached a minimum of 10 cm they were distributed in
three groups (shelters A, B, and C) based on the fact that each group
was made up of botanical species from at least two dierent families
(table 1). The transplanting was carried out at the edge of the vineyard
(at each post of the vine plant support line), at a rate of six plants per
shelter (two of each plant species arranged in double rows) with eight
repetitions for each shelter and a separation of three meters between
each repetition.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Narrea and Gómez. Rev. Fac. Agron. (LUZ). 2024 41(2): e244119
3-6 |
Table 1. Plants of the three plant shelters.
Shelter Scientic name Common name Family
A Calendula ocinalis L. Calendula Asteraceae
Helianthus annuus L. Sunower Asteraceae
Foeniculum vulgare Mill Fennel Apiaceae
B Zinnia acerosa (DC) Zinnia Asteraceae
Crotalaria incana L. Crotalaria Fabaceae
Foeniculum vulgare Mill Fennel Apiaceae
C Crotalaria incana L. Crotalaria Fabaceae
Salvia splendens L. Salvia Lamiaceae
Ocimum basilicum L. Basil Lamiaceae
The evaluations were carried out on a biweekly basis, at the same
time (10:00 a.m.) and with an approximate duration of one minute/
plant; the technique of direct observation was used, reviewing the
structure of each plant to detect, identify and record the entomofauna
present; unidentied specimens were manually collected in the
eld in 70 % alcohol jars and were taken to the Klaus Raven Büller
Entomology Museum Laboratory of the National Agrarian University
La Molina, for subsequent identication.
To determine species richness (Margalef Index (DMg)),
dominance (Simpson’s Index (D)), and Pielou’s evenness (J’), the
PAST: statistical software for paleontology and biodiversity was
used. Statistical analysis by functional group between shelters was
done using the InfoStat program.
Results and discussion
Abundance of general entomofauna and main species found
A total of 1,209 insects belonging to 15 species, nine families, six
orders, and four functional groups were detected in the three plant
shelters (table 2). Hymenoptera (35.7 %) was the most abundant
order and had the highest number of families and species, mainly
Apis mellifera L., the dominant species (32.5 %), presumably due to
the available supply of owers and pollen oered by the three shelters;
Zumbado & Azofeifa (2018) highlight the role of Hymenoptera as
the most important group of angiosperm pollinators, but also for
being made up of many biological controllers of agricultural pests.
The other braconid Hymenoptera and Ichneumonidae were scarce;
according to García-Gutierrez, et al. (2013), these Hymenoptera are
common parasitoids of Lepidoptera and Coleoptera, which would
explain their low presence in the surroundings of the vineyard, a crop
whose main pests do not belong to any of these orders.
Diptera (24.07 %) was the second most abundant order, and
like the Hymenoptera, it was composed of insects of importance as
pollinators and biological controllers, highlighting the blowies of
the family Calliphoridae: Chrysomya sp. (21.09 %) as the second
dominant species, which in the present study was found in owers
as well as bees; in Colombia C. putoria (Wiedemann) is common
in avocado owers (Persea americana Mill) (Carabalí-Banguero et
al., 2018) and in Turkey, much of the mango production (Mangifera
indica L.) is due to C. megacephala Fabricius (Nurul et al., 2015).
The two hovery species, Allograpta exotica and Pseudodorus
clavatus, are reported as predators of true bug pests (Hemiptera),
mainly aphids (Soca-Flores et al., 2022; Arcaya et al., 2013) and
are also associated with the importance of the presence of owering
plants in the environment of agricultural elds (Bertolaccini et al.,
2008; Morales & Köhler, 2008).
Thysanoptera, third in abundance (16.87 %) fully represented by
Thrips tabaci is usually found in the grapevine in the phenological
stage of owering and initiation of fruit set (Viglianco et al., 2021);
their presence in plant shelters should not be considered harmful,
taking into account that phytophagous act as alternative prey for
natural controllers to continue their biological cycle when they do not
nd their prey in the elds, this usually happens during agrochemical
applications (Peredo et al., 2020). Neuroptera with the green lacewing
Chrysoperla externa, occupied the fourth place in abundance (9.93 %),
the presence of this predator was an important result considering that,
Table 2. Abundance of entomofauna in three plant shelters adjacent to a vineyard in Ica-Peru.
Order Family Species/Morphospecies FG
Shelter
A B C
Coleoptera Coccinellidae Harmonia axyridis (Pallas) P 12 9 3
Hipodamia convergens Guerin-Meneville P 21 9 0
Cicloneda sanguinea L. P 12 3 0
Diptera Syrphidae Allograpta exotica (Wiedemann) P 18 0 6
Pseudodorus clavatus (Fabricius) P 6 3 3
Calliphoridae Chrysomya sp. Po 129 114 12
Hemiptera Aphididae Aphis cracivora Koch F 6 9 0
Aphis spiraecola Match F 51 27 0
Hymenoptera Braconidae Braconidae sp. 1 Pa 3 3 3
Braconidae sp. 2 Pa 0 3 3
Ichneumonidae Ichneumonidae sp. Pa 6 6 0
Apidae Apis mellifera L. Po 138 84 171
Bombus sp. Po 0 3 9
Neuroptera Chrysopidae Chrysoperla externa P 48 51 21
Thysanoptera Thripidae Thrips tabaci Lind. F 114 72 18
FG = Functional group; P = Predator; Po=Pollinator; F=Phytophagous; Pa=Parasitoid.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244119 April-June. ISSN 2477-9407.
4-6 |
in the vineyards of Peru, its release is common to control a wide range
of soft-bodied insects, mainly due to its eectiveness as a controller,
its adaptation to various agricultural environments and its resistance
to several pesticides (Núñez, 1989).
Finally, Hemiptera and Coleoptera, both represented by only
families, Aphididae and Coccinellidae respectively, together
constituted less than 14 % of the insects recorded in the evaluated
shelters. According to Greco & Roca (2020), Coleoptera is one of the
most used orders in biological control programs and Coccinellidae is
one of its main families, so despite the low population reported, it is
relevant if we take into account that they feed on insects considered
by Evans (2009) as pests of the grapevine: aphids (Aphididae),
mealybugs (Pseudococcidae), whiteies (Aleyrodidae) and thrips
(Thysanoptera).
The four functional groups found were: pollinators, phytophagous,
predators, and parasitoids, coinciding with similar studies carried
out in vineyards (Miles et al., 2012; López et al., 2019), where the
presence of these four functional groups conrms that when the
structure of the agricultural environment is diversied, insects appear,
including many benecial ones available to potentiate the biological
control of many pests. In the present study, the proportion of the
functional groups of shelters A and B was similar to that of the total,
except for shelter C, where there were more pollinators and fewer
phytophagous plants (gure 1).
Figure 1. Abundance of entomofauna by functional group.
Statistical analysis and biodiversity indices
As reported in table 3, there are no signicant dierences between
shelters A, B, and C in terms of the abundance of pollinators and
parasitoids, but there are signicant dierences between shelters A
and C in terms of predators and between shelters A and B with C in
terms of phytophagous; in general, and statistical terms, shelters A and
B were more similar to each other, with respect to the composition of
the functional groups.
The highest values of richness and diversity were found in shelters
A and B, being consistent with the greater number of individuals and
species that both shelters hosted. The lowest evenness index was
found in shelter C, which is explained by the majority presence of
Apis mellifera, which with 68.67 % was the dominant species in this
shelter unlike shelters A and B, where the same species represented
24.47 % and 21.21 % respectively.
Table 3. Indices of richness (Margalef), diversity (Simpson), and
venness for entomofauna by the functional group present
in three plant shelters adjacent to a vineyard.
Functional
group
Shelter Abundance
Margalef
(DMg)
Simpson
(1-D)
Evenness
(J)
Total
A 564 2.29 0.83 0.78
B 396 2.68 0.81 0.74
C 249 2.04 0.51 0.53
Predators
A (a) 117 1.05 0.75 0.88
B (ab) 75 0.93 0.51 0.64
C (b) 33 0.86 0.55 0.75
Parasitoids
A (a) 9 0.46 0.44 0.92
B (a) 12 0.80 0.63 0.95
C (a) 6 0.56 0.50 1.00
Pollinators
A (a) 267 0.18 0.50 1.00
B (a) 201 0.38 0.50 0.68
C (a) 192 0.38 0.20 0.38
Phytophagous
A (a) 171 0.39 0.47 0.68
B (a) 108 0.43 0.49 0.75
C (b) 18 0.00 0.00 -
Lowercase letters in dierent parentheses indicate signicant dierences (p≤0.05).
In terms of functional groups, predators were more abundant,
diverse, and with greater evenness in shelter A, while parasitoids
were more diverse in shelter B, but with very similar evenness in all
three shelters; pollinators had low richness and diversity in all three
shelters, with high dominance in shelter C. As for phytophagous, they
were more abundant and diverse in shelters A and B, but very scarce
in shelter C.
Composition of plant shelters and functional groups present
The distribution of functional groups according to the species
comprising the plant shelters is shown in gure 2.
0% 20% 40% 60% 80% 100%
Total
C
B
A
P lant shelter
Predator Parasitoid Pollinator Phytophage
Figure 2. Abundance of entomofauna in each component of the
dierent plant shelters.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Narrea and Gómez. Rev. Fac. Agron. (LUZ). 2024 41(2): e244119
5-6 |
It is observed that in shelter A, fennel (Apiacea), calendula
and sunowers (Asteraceae), in that order, stood out for hosting
the largest population of predators in the study, mainly C. externa,
coinciding with similar studies that highlight fennel as an excellent
reservoir of green lacewings (Chrysopidae), hoveries (Manfrino
et al., 2011) and ladybugs (Coccinellidae) (Rebolledo et al., 2007).
As for the pollinator, it was observed that this plant hosted the
largest populations of Chrysomya sp. Calendula did not harbor any
phytophagous and, like the reports by Andorno et al. (2014), was
a shelter for ladybugs and parasitoid wasps. Coinciding with the
results of Ramírez-Reyes et al. (2019), the sunower did not harbor
parasitoids, but if there was a high population of Thrips tabaci, this
attraction could be due to the size of the sunower owers, which,
being very large, show much more their yellow color, a color that,
according to Joyo &Narrea (2015), exerts an attractive eect on thrips
to the point that it is common to use yellow sticky traps in vineyards
to attract and trap individuals of this pest.
Predators of shelter B were found mainly in zinnia (Asteraceae)
and fennel (Apiaeae); zinnia hosted the largest population of predator
C. externa of the entire study; fennel, as in shelter A, hosted the
four functional groups, of which predators were the most abundant,
although in smaller numbers than zinnia. In contrast, crotalaria
harbored few predators, more phytophagous species, and no
parasitoids. According to Van Rijn & Wäckers (2016), not all of the
plant species that make up the varied plants (plant shelters) produce
adequate resources, nor is it known for sure which species will be
most eective in hosting benecial organisms.
In shelter C, characterized by being the least abundant, least
diverse, and with the lowest population of biological controllers,
basil (Lamiacea) stood out for being the only plant in the entire study
in which no green lacewings were found; according to Adam et al.
(2019) and Hassan et al. (2015), this plant has a repellent eect against
several insects, which is one reason why this shelter had the lowest
insect population in general (20.6 % of the insects present throughout
the study); however, this repellent eect would not apply to bees,
which preferred basil over other plants, probably since, unlike other
plants, basil owers are small and open, conditions that, according to
Altieri & Nicholls (2012), make its pollen and nectar more accessible
to bees and other pollinators; crotalaria and salvia had the lowest
population records in the study, with bees being the most important
population.
Conclusions
In the three shelters evaluated, entomofauna composed of
predators, parasitoids, pollinators, and phytophagous was found;
pollinators are the most abundant and parasitoids are the least
abundant. Shelters A and B were similar in terms of the composition
of these functional groups.
Shelter A was the most abundant and, together with shelter B,
stood out for hosting the largest number of biological controllers of
the grapevine; in both shelters, fennel (Foeniculum vulgare) was the
outstanding plant species in richness and abundance of predators,
followed by calendula (Calendula ocinalis) (shelter A) and zinnia
(Zinnia acerosa) (shelter B), which also contributed a signicant
share of predators and parasitoids. Of lesser abundance, shelter C was
widely inhabited by pollinators, especially Apis mellifera L., which
was found mostly in basil (Ocimum basilicum).
Among all the predators found, Chrysoperla externa (Hagen)
stands out, the main controller of the “vine mealybug” (Planococcus
spp.), which means that the installation of plant shelters in vineyard
elds could represent an additional alternative to enhance the
biological control of pests in this crop.
Recommendations
Considering that the behavior of insects can vary throughout the
day and with it the composition, dominance, and evenness of the
population in plant shelters, it is recommended to carry out similar
studies with sampling at dierent times than the one in this study.
Literature cited
Adam, A., Ahmed, S., Mohamed, T., Azrag, R., Mustfa, S. & Hamdi, O. (2019).
Evaluation of repellent activities of the essential oil of Ocimum basilicum
against Anopheles mosquito and formulation of mosquito repellent
cream. Biomedical Research and Clinical Practice. 4. DOI: 10.15761/
BRCP.1000184
Altieri, M., Ponti, L. & Nicholls, C. (2007). El manejo de las plagas a través de
la diversicación de las plantas. LEISA Revista de Agroecología, 22(4),
9-13. https://www.leisa-al.org/web/images/stories/revistapdf/vol22n4.
pdf
Altieri, M. & Nicholls, C. (2012). Diseños Agroecológicos para potenciar
el control biológico de plagas: incrementando la biodiversidad de
entomofauna benéca en agroecosistemas (Spanish Edition). Sociedad
Cientíca Latino Americana de Agroecología (SOCLA). 96 p.
Andorno, A., Botto, E., La Rossa, F. & Möhle, R. (2014). Control biológico de
ádos por métodos conservativos en cultivos hortícolas y aromáticas.
Buenos Aires, Argentina: Ediciones INTA. https://ciaorganico.net/
documypublic/485_inta-control_biologicode_ados_reglon_62-2.pdf
Arcaya, E., Mengual, X., Pérez-Bañón, C., & Rojo, S. (2013). Registros y
distribución de sírdos depredadores (Diptera: Syrphidae: Syrphinae) en
el estado Lara, Venezuela. Bioagro, 25(2), 143-148. https://ve.scielo.org/
pdf/ba/v25n2/art08.pdf
Asteraki, E., Hart, B., Ings. T., & Manley, W. (2004). Factors inuencing the
plant and invertebrate diversity of arable eld margins. Agriculture,
Ecosystems & Environment, 102 (2), 219-231. https://doi.org/10.1016/j.
agee.2003.07.003
Bertolaccini, I., Andrada, P., & Quaino, O. (2008). Efecto de franjas marginales
en la atracción de coccinellidae y syrphidae, depredadores de ádos en
trigo, en la zona central de la provincia de Santa fe, Argentina. Agronomía
Tropical, 58(3), 267-276. ve.scielo.org/scielo.php?script=sci_
arttext&pid=S0002-192X2008000300007
Cáceres, H., & Julca, A. (2018). Caracterización y tipología de ncas productoras
de vid para Pisco en la región Ica-Perú. Idesia (Arica), 36(3), 35-43.
https://dx.doi.org/10.4067/S0718-34292018005001002
Carabalí-Banguero, D., Montoya-Lerma, J. & Carabalí-Muñoz, A. (2018).
Dípteros asociados a la oración del aguacate Persea americana Mill cv.
Hass en Cauca, Colombia. Biota Colombiana, 19(1), 92-111. https://doi.
org/10.21068/c2018v19n01a06
Evans, E. (2009). Lady beetles as predators of insects other than Hemiptera.
Biological Control, 51, 255-267. https://doi.org/10.1016/j.
biocontrol.2009.05.011
Fiedler, A., & Landis, D. (2007). Plant characteristics associated with natural
enemy abundance at Michigan native plants. Environ Entomol., 36(4),
878-886. DOI: 10.1603/0046-225x(2007)36[878:pcawne]2.0.co;2
García-Gutiérrez, C., González-Maldonado, M. B., & González-Hernández,
A. (2013). Parasitismo natural de Braconidae e Ichneumonidae
(Hymenoptera) sobre Spodoptera frugiperda (Lepidoptera: Noctuidae).
Revista Colombiana de Entomología, 39 (2), 211-215. DOI: 10.25100/
socolen.v39i2.8237
González-Chang, M., Tiwari, S., Sharma, S., & Wratten, S. (2019). Habitat
management for pest management: limitations and prospects, Annals
of the Entomological Society of America, 112(4), 302-317 https://doi.
org/10.1093/aesa/saz020
Greco, N., & Rocca, M. (2020). Depredadores. En: Polack, A., Lecuona, R.,
López, S. (Eds.) Control biológico en cultivos hortícolas. Experiencias
argentinas de las últimas tres décadas. INTA. https://ri.conicet.gov.ar/
bitstream/handle/11336/143695/CONICET_Digital_Nro.93365932-
64f2-4315-8437-a42c0850c943_A.pdf?sequence=2&isAllowed=y
Hassan, M., Hammad, K. & Saeed, M. (2015). Repellent eect of Ocimum
basilicum and Glycyrrhiza glaba extracts against the mosquito vector,
Culex pipiens (Diptera Culicidae). J Egypt Soc Parasitol, 45 (2), 241-
248. DOI 10.12816/0017569.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244119 April-June. ISSN 2477-9407.
6-6 |
Joyo, G., & Narrea, M. (2015). Efecto del color de trampa pegante en la captura
de Frankliniella occidentalis (Pergande) y Thrips tabaci Linderman en
el cultivo de vid en Chincha Perú. Universidad Nacional Agraria. Anales
Cientícos, 76(1), 94-98. DOI: http://dx.doi.org/10.21704/ac.v76i1.769
Landis, D., Menalled, F., Lee, J., Carmona, D., & Pérez-Valdez, A. (2000). Habitat
management to enhance biological control in IPM. In G Kenedy y T
Sutton (Eds.): Emerging technologies for lntegrated Pest Management:
Concepts, Research and Implementation. APS PRESS. ST. Paul,
Minesota.
López, O., Salto, C., & Luiselli, S. (2003). Foeniculum vulgare Miller como
hospedera de pulgones y sus enemigos naturales en otoño. Revista FAVE-
Ciencias Agrarias, 2 (1-2), 55-65. DOI:10.14409/fa.v2i1/2.76
López - García, G. P., Mazzitelli, M. E., Fruitos, A., González, M., Marcucci,
B., Giusti, R., Alemanno, V., Del Barrio, L., Portela, J. & Debandi, G.
(2019). Biodiversidad de insectos polinizadores y depredadores en
agroecosistemas vitícolas de Mendoza, Argentina: Consideraciones para
el manejo del hábitat. Revista de la Facultad de Ciencias Agrarias, 51(1),
309-322. https://bdigital.uncu.edu.ar/objetos_digitales/13695/2019-1-
cap-22-debandi.pdf
Manfrino, R. G., Salto, C. E., & Zumoen L. (2011). Estudio de las asociaciones
ádos-entomófagos sobre Foeniculum vulgare (Umbelliferae) y
Conyza bonariensis (Asteraceae) en la región central de Santa Fe,
Argentina. Revista de la Sociedad Entomológica Argentina, 70(1-2), 99-
109.
https://www.redalyc.org/articulo.oa?id=322028488010
Miles, A., Wilson, H., Altieri, M., & Nicholls, C. (2012). Habitat diversity at the
eld and landscape level: conservation biological control research in
California viticulture. En: Bostanian, N. J.; Vincent, C.; Isaacs, R. (Ed.).
Arthropod management in vineyards: pests, approaches, and future
directions. Springer. 139-157. doi: 10.1007/978-94-007-4032-7_8
Morales, M. & Köhler, A. (2008). Comunidade de Syrphidae (Diptera): diversidade
e preferências orais no Cinturão Verde (Santa Cruz do Sul, RS, Brasil).
Revista Brasileira de Entomología, 52(1). https://doi.org/10.1590/S0085-
56262008000100008
Núñez, E. (1989). Ciclo biológico y crianza de Chrysoperla externa y
Ceraeochrysa cincta, (Neuroptera, Chrysopidae). Revista Peruana de
Entomología, 31(1), 76–82. https://sisbib.unmsm.edu.pe/BVRevistas/
entomologia/v31/pdf/a16v31.pdf
Nurul, H., Che Salmah, A., Abu Hassan, R., Hamdan, A., & Abdul Razak, N.
(2015). Pollination services of mango ower pollinators. Journal Insect
Science, 15(1), 113. DOI: 10.1093/jisesa/iev090
Peredo, S., Barrera, C., Martínez, J. L., & Romo, J. (2020). Plantas medicinales
y aromáticas como hospederas de enemigos naturales de Saissetia oleae
en arreglos espacio-temporales para el cultivo agroecológico de Olea
europea. Boletín Latinoamericano y del Caribe de Plantas Medicinales
y Aromáticas,19(5), 482 - 491. DOI: https://doi.org/10.37360/
blacpma.20.19.5.32
Ramírez-Reyes, M., Hernández, Y., Reyes-Urban, I., Martínez-Vázquez, A.,
Jiménez-Ambriz, S., Mercado Mancera, G., & Mayorga, A. (2019).
Entomofauna oral del girasol (Helianthus annuus L.) cultivado
en Cuautitlán Izcalli, Estado de México. AgroProductividad. 12(6)
DOI:10.32854/agrop.v0i0.1373
Rebolledo, R., Palma, R., Klein, C. & Aguilera, A. (2007). Coccinellini (Col.
Coccinellidae) presentes en diferentes estratos vegetales en la IX Región
de La Araucanía (Chile). Idesia, 25, 63-71. https://www.scielo.cl/pdf/
idesia/v25n1/art07.pdf
Soca-Flores, M., Vergara, C., Callohuari, Y., & Chávez, A. (2022). Insectos
tófagos asociados al cultivo de quinua (Chenopodium quinoa Willd) en
invierno y sus controladores biológicos. Manglar, 19(2), 143-151. https://
dx.doi.org/10.17268/manglar.2022.018
Van Rijn, P. & Wäckers, F. (2016). Nectar accessibility determines tness, ower
choic,e and abundance of hoveries that provide natural pest control. J
Appl Ecol, 53, 925-933. https://doi.org/10.1111/1365-2664.12605
Vázquez, L., Matienzo, Y., Veitia, M., & Alfonso, J. (2008). Conservación y
manejo de enemigos naturales de insectos tófagos en los sistemas
agrícolas de Cuba. INISAV. La Habana, Cuba. https://www.researchgate.
net/publication/268981130_Conservacion_y_manejo_de_enemigos_
naturales_de_insectos_tofagos_en_los_sistemas_agricolas_de_Cuba
Viglianco, A. I., Cragnolini, C. I., Salvo, A., & Avalos, D. S. (2021). Especies
de Thysanoptera asociadas a viñedos en la zona centro norte de la
provincia de Córdoba (Argentina). Agriscientia, 38(2), 135-141. DOI:
10.31047/1668.298x.v38.n2.32486
Zumbado, M., & Azofeifa, D. (2018). Insectos de importancia agrícola. Guía Básica
de Entomología. Heredia, Costa Rica. Programa Nacional de Agricultura
Orgánica (PNAO). 204 pp. https://www.mag.go.cr/bibliotecavirtual/H10-
10951.pdf