This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244116 April-June. ISSN 2477-9407.
6-6 |
The use of both bacterial and fungal biological controls can induce
increased height in tomato plants infected with R. solanacearum and
Meloidogyne incognita, respectively (Chávez-Arteaga et al., 2022;
Zhou et al., 2021). Biological controls would not only positively aect
plant height and pseudostem diameter, but also chlorophyll content,
leaf area, leaf thickness, shoot biomass, and roots of banana seedlings
infected with F. oxysporum f. sp. cubense variety 4 tropical (Li et
al., 2021). Even though, the mechanism by which Trichoderma spp.,
ADMF®, or in a certain way Bacillus spp. induced increased plant
height and pseudostem diameter in banana plants was not studied, it
could be inferred that these inputs could be acting as biostimulants or
plant growth promoters (Chavez-Arteaga et al., 2022; Quispe-Quispe
et al., 2022).
Leaf emission rate
Although the leaf emission rate assessed up to 113 dat was similar
in plants treated with Trichoderma spp., Bacillus spp., and ADMF®
compared to those not treated, only the Trichoderma spp. treatment
diered positively from the control (13.3 and 11.8 leaves on average,
respectively). The increase generated by Trichoderma spp. in banana
plants could subsequently also have an impact on fruit production.
However, this and other aspects may be addressed in future research.
In this context, Vargas-Calvo et al. (2015) noted that the number
of total leaves emitted (liform and true) in tall and short banana
cultivars was 39 leaves on average throughout their life cycle.
Conclusions
Trichoderma spp. (T1), Bacillus spp. (T2) and ADMF® (T3)
have a benecial eect on the management of Moko caused by R.
solanacearum in bananas. These inputs evidenced their biocontrol
capacity, which allows to reduce the incidence and progress of the
disease in banana plants under eld conditions. Likewise, their
application promotes a greater vegetative development of banana
plants. Considering these results, Trichoderma, Bacillus, and the
ADMF® product are promising sustainable alternatives to be
implemented in the integrated management of Moko in organic
banana crops. However, further studies are needed to conrm its
eectiveness on a larger scale.
Acknowledgment
The research work was possible thanks to the support of the Tierra
Verde Agricultural Production Association “ASOPRATVERDE”, the
National Institute of Agricultural Research “INIAP” (Santo Domingo
Experimental Station, Pichilingue Tropical Experimental Station), the
DAPME Project, AGROCALIDAD and the Sustainable Agriculture
and Bioenergy Research Group of the Faculty of Agronomic
Engineering of the UTM.
Literature cited
Agamez Ramos, E. Y., Zapata Navarro, R. I., Oviedo Zumaqué, L. E., & Barrera
Violeth, J. L. (2008). Evaluation of substrates and fermentation solid
process for spores production of Trichoderma sp. Revista Colombiana
de Biotecnología, 10(2), 23-34. https://www.redalyc.org/articulo.
oa?id=77610204
Avozani, A., Tumelero, A. I., Baldiga Tonin , R., Denardin, N., Gomes Silva, A., &
Garcés-Fiallos, F. R. (2022). Biological control of Corynespora cassicola
and Drechslera tritici-repentis. Revista de Agricultura Neotropical, 9(4),
e7111. https://doi.org/10.32404/rean.v9i4.7111
Bautista-Montealegre, L. G., Bolaños-Benavides, M. M., Abaunza-González,
C. A., Arguelles-Cárdenas, J. H., & Forero-Camacho, C. A. (2016).
Moko de plátano y su relación con propiedades físicas y químicas en
suelos del departamento de Quindío Colombia. Revista Colombiana
de Ciencias Hortícolas, 10(2), 273-283. https://doi.org/10.17584/
rcch.2016v10i2.5066
Brunda, N. B., Chirag, D., Jilen, M., & Menaka, M. (2023). Eect of blending
proportion on sensory appeal of the blended squash using banana pseudostem
sap with mango, papaya and Aloe vera. IJCS, 11(1), 06-11. https://www.
chemijournal.com/archives/2023/vol11issue1/PartA/10-6-32-941.pdf
Castaño-Zapata, J. (1989). Estandarización de la estimación de daños causados
por hongos, bacterias y nematodos en fríjol (Phaseolus vulgaris
L.). Fitopatología Colombiana, 13(1), 9-19.
Castillo, T. (2023). Eect of shade on the severity of Moko (Ralstonia
solanacearum) on Guineo (Musa balbisiana ABB). European Journal
of Agriculture and Food Sciences, 5(1), 1-5. https://doi.org/10.24018/
ejfood.2023.5.1.611
Ceballos, G., Álvarez, E., & Bolaños, M. M. (2014). Reduction in populations
of Ralstonia solanacearum race 2 in plantain (Musa AAB Simmonds)
with extracts from Trichoderma spp. and antagonistic bacteria. Acta
Agronomica, 63(1), 83-90. https://doi.org/10.15446/acag.v63n1.43121
Chávez-Arteaga, K.T., Cedeño-Moreira, Á.V., Canchignia-Martínez, H.F., &
Garcés Fiallos, F.R. (2022). Candidate rhizobacteria as plant growth-
promoters and root-knot nematode controllers in tomato plants.
Scientia Agropecuaria, 13(4), 423-432. https://doi.org/10.17268/sci.
agropecu.2022.038
Creencia Armi, R., Alcantara, E. P., Opulencia, R. B., Diaz, M. G. Q., & Monsalud,
R. G. (2022). A preliminary screening of philippine mangrove soil bacteria
exhibit suppression of Ralstonia solanacearum (Smith) Yabuuchi et al.
causing moko disease of banana (Musa acuminata Cavendish subgroup)
under laboratory conditions. Journal of the International Society for
Southeast Asian Agricultural Sciences, 28(1), 135-148. http://issaasphil.
org/wp-content/uploads/2022/06/11.-Creencia-et-al-2022-Mangrove-
soil-bacteria-FINAL.pdf
Crespo-Clas, Á.M., Canchignia-Martínez, H.F., & Garcés-Fiallos, F.R. (2023).
Nematodes and root system are aected by rhizobacterial consortium in
the third generation of commercial banana plants. Revista de Agricultura
Neotropical, 10(3), e7725. https://doi.org/10.32404/rean.v10i3.7725
Debnath, S., Khan, A. A., Das, A., Murmu, I., Khan, A., & Mandal, K. K. (2019).
Genetic Diversity in Banana. 217-241. https://doi.org/10.1007/978-3-
319-96454-6_8
Fernandes Domingues Duarte, C., Cecato, U., Trento Biserra, T., Mamédio, D., &
Galbeiro, S. (2020). Azospirillum spp. en gramíneas y forrajeras. Revisión.
Rev. Mex. Cienc. Pecu., 11(1), 223-240. https://doi.org/10.22319/rmcp.
v11i1.4951
He, L. Y., Sequeira, L., & Kelman, A. (1983). Characteristics of strains of
Pseudomonas solanacearum from China. Plant Disease, 67, 1357-
1361. https://www.apsnet.org/publications/plantdisease/backissues/
Documents/1983Articles/PlantDisease67n12_1357.PDF
Leite Pais, A. K., Silva dos Santos, L. V., Rodrigues Albuquerque, G. M., Gomes
de Farias, A. R., Silva Junior, W. J., de Queiroz Balbino, V., Freire
Silva, A. M., Siqueira da Gama, M. A., & Barbosa de Souza, E. (2022).
Comparative genomics and phylogenomics of the Ralstonia solanacearum
Moko ecotype and its symptomatological variants. Genetics and
Molecular Biology, 45, 4, e20220038. https://doi.org/10.1590/1678-4685-
GMB-2022-0038
Li, X., Li, K., Zhou, D., Zhang, M., Qi, D., Jing, T., Zang, X., Qi, C., Wang,
W., Xie, J. (2021). Biological control of banana wilt disease caused by
Fusarium oxyspoum f. sp. cubense using Streptomyces sp. H4. Biological
Control, 155, 104524. https://doi.org/10.1016/j.biocontrol.2020.104524
Quispe-Quispe, E., Moreira-Morrillo, A.A., & Garcés-Fiallos, F.R. (2022). Una
revisión sobre biocontroladores de Phytophthora capsici y su impacto en
plantas de Capsicum: Una perspectiva desde el exterior al interior de la
planta. Scientia Agropecuaria, 13(3), 275-289. https://doi.org/10.17268/
sci.agropecu.2022.025
Ramírez, M., Neuman, B. W., & Ramírez, C. A. (2020). Bacteriophages as
promising agents for the biological control of Moko disease (Ralstonia
solanacearum) of banana. Biological Control, 149, 104238. https://doi.
org/10.1016/j.biocontrol.2020.104238
Sabando-Ávila, F., Molina-Atiencia, L.M., & Garcés-Fiallos, F.R. (2017).
Trichoderma harzianum en pre-trasplante aumenta el potencial
agronómico del cultivo de piña. Revista Brasileira De Ciências Agrárias,
12(4), 410-414. https://doi.org/10.5039/agraria.v12i4a5468
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J.
B., Coelho, M. R., Lumbreras, J. F., & Cunha, T. J. F. (2013). Sistema
brasileiro de classicação de solos. 3. ed. Rev. Ampl. Rio de Janeiro:
Embrapa Solos.
Shaner, G., and Finney R. E. (1977). The eect of nitrogen fertilization on the
expression of slow-mildewing resistance in Knox wheat. Phytopathology,
67, 1051-1056. https://doi.org/10.1094/Phyto-67-1051
Soil SurveySta. (2014). Keys to soil taxonomy. Washington: Natural Resources
Conservation Service and Agriculture Department.
Valencia, L., Álvarez, E., & Castaño, J. (2014). Resistencia de treinta y cuatro
genotipos de platano (Musa AAB) y banano (Musa AAA) a cinco cepas
de Ralstonia solanacearum Raza 2 (Smith). Agronomía, 22(2), 21-34.
http://agronomia.ucaldas.edu.co/downloads/Agronomia 22(2)_3.pdf
Vargas-Calvo, A., Acuña-Chinchilla, P., & Valle-Ruiz, H. (2015). La
emisión foliar en plátano y su relación con la diferenciación oral.
Agronomía Mesoamericana, 26(1), 120-128. https://doi.org/10.15517/
am.v26i1.16935
Villegas-Escobar, V., González-Jaramillo, L.M., Ramírez, M., Moncada, R.N.,
Sierra-Zapata, L., Orduz, S., & Romero-Tabarez, M. (2018). Lipopeptides
from Bacillus sp. EA-CB0959: Active metabolites responsible for in vitro
and in vivo control of Ralstonia solanacearum. Biological Control, 125,
20-28. https://doi.org/10.1016/j.biocontrol.2018.06.005
Zhou, Y., Yang, L., Wang, J., Guo, L., & Huang, J. (2021). Synergistic eect
between Trichoderma virens and Bacillus velezensis on the control of
tomato bacterial wilt disease. Horticulturae, 7(11), 439. https://doi.
org/10.3390/horticulturae7110439