© The Authors, 2024, Published by the Universidad del Zulia*Corresponding author: acabrera5196@utm.edu.ec
Keywords:
Antioxidants
Total phenols
Fiber
Bagasse powder
Characterization of the physicochemical, bromatological properties, and antioxidant activity
of powdered sugarcane bagasse
Caracterización de las propiedades sicoquímicas, bromatológicas y actividad antioxidante del
bagazo de caña de azúcar en polvo
Caracterização das propriedades físico-químicas, bromatológicas e atividade antioxidante do bagaço
de cana em pó
Alanís Dorissel Cabrera Román
*
Maritza Elizabeth Velásquez Zambrano
José Patricio Muñoz Murillo
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244114
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v41.n2.04
Food technology
Associate editor: Dra. Gretty R. Ettiene Rojas
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela.
Departamento de Procesos Agroindustriales, Facultad de
Agrociencias, Universidad Técnica de Manabí, Chone,
Ecuador.
Received: 26-01-2024
Accepted: 21-03-2024
Published: 19-04-2024
Abstract
By-products are currently considered important foods for human
consumption due to their large contribution of bioactive compounds.
The objective of the study was to characterize the physicochemical,
bromatological, and antioxidant properties of powdered sugarcane bagasse.
To obtain sugarcane bagasse powder (PBCA), samples were collected in three
artisanal sugar mills in the Junín canton, province of Manabí. The samples
were labeled under the codes; M1, M2, and M3. An analysis of variance
and Tukey’s test at 5 % signicance were applied. Statistical signicance
was determined between the samples evaluated, the results demonstrated a
variation in the physicochemical properties: pH (5.96 ± 0.01 – 7.14 ± 0.05);
acidity (0.09 ± 0.00 0.37 ± 0.00 %); moisture (5.05 ± 0.32 9.80 ± 0.68
%) and ash (1.94 ± 0.00 – 4.47 ± 0.02 %), bromatological: crude ber (13.85
± 0.11 24.39%); protein (0.16 ± 0.00 0.86 ± 0.01 %); dry matter (88.52
± 3.51 94.94 ± 0.32%) and fat (0.09 ± 0.00 0.13 ± 0.01%), functional
and antioxidant compounds: hemicellulose (25.32 ± 0.79 %); cellulose
(17.90 ± 0.05 – 26.83 ± 0.20%); lignin (0.31 ± 0.00 – 0.51 ± 0.00 %); water
retention capacity (3.27 ± 0.01 – 4.93 ± 0.19 g H
2
O.g
-1
); antioxidant activity
(3.70 ± 0.03 9.92 ± 9.12 µmol trolox equivalent.g
-1
) and total phenols
(2.19 ± 0.00 – 13.35 ± 0.03 mg gallic acid equivalent.g
-1
). All samples were
microbiologically acceptable. PBCA presented nutritional characteristics of
importance for the formulation of products for human consumption.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244114 April-June. ISSN 2477-9407.2-7 |
Resumen
Los subproductos actualmente son considerados alimentos
de importancia para el consumo humano por su gran aporte de
compuestos bioactivos. El estudio tuvo como objetivo caracterizar
las propiedades sicoquímicas, bromatológicas y antioxidantes del
bagazo de caña de azúcar en polvo. Para la obtención del polvo de
bagazo de caña de azúcar (PBCA) se recolectaron muestras en tres
trapiches artesanales del cantón Junín provincia de Manabí. Las
muestras se etiquetaron bajo los códigos; M1, M2 y M3. Se aplicó
un análisis de varianza y prueba de Tukey al 5 % de signicancia.
Se determinó signicancia estadística entre las muestras evaluadas,
los resultados demostraron una variación de las propiedades
sicoquímicas: pH (5,96 ± 0,01 7,14 ± 0,05); acidez (0,09 ± 0,00
0,37 ± 0,00 %); humedad (5,05 ± 0,32 9,80 ± 0,68 %) y cenizas
(1,94 ± 0,00 4,47 ± 0,02 %), bromatológicas: bra cruda (13,85 ±
0,11 – 24,39 %); proteína (0,16 ± 0,00 – 0,86 ± 0,01 %); materia seca
(88,52 ± 3,51 94,94 ± 0,32 %) y grasa (0,09 ± 0,00 – 0,13 ± 0,01 %),
compuestos funcionales y antioxidantes: hemicelulosa (25,32 ± 0,79
%); celulosa (17,90 ± 0,05 – 26,83 ± 0,20 %); lignina (0,31 ± 0,00
0,51 ± 0,00 %); capacidad de retención de agua (3,27 ± 0,01 4,93
± 0,19 g H
2
O.g
-1
); actividad antioxidante (3,70 ± 0,03 9,92 ± 9,12
µmol trolox equivalente.g
-1
) y fenoles totales (2,19 ± 0,00 13,35
± 0,03 mg ácido gálico equivalente.g
-1
). Todas las muestras fueron
microbiológicamente aceptables. El PBCA presentó características
nutricionales de importancia para la formulación de productos de
consumo humano.
Palabras clave: antioxidantes, fenoles totales, bra, polvo de bagazo
de caña.
Resumo
Os subprodutos são atualmente considerados alimentos
importantes para consumo humano devido à sua grande contribuição
de compostos bioativos. O objetivo do estudo foi caracterizar as
propriedades físico-químicas, bromatológicas e antioxidantes do
bagaço de cana em pó. Para a obtenção do pó de bagaço de cana-de-
açúcar (PBCA), foram coletadas amostras em três usinas artesanais
de açúcar do cantão Junín, província de Manabí. As amostras foram
rotuladas sob os códigos; M1, M2 e M3. Foram aplicados análise de
variância e teste de Tukey a 5 % de signicância. Foi determinada
signicância estatística entre as amostras avaliadas, os resultados
demonstraram variação nas propriedades físico-químicas: pH (5,96
± 0,01 – 7,14 ± 0,05); acidez (0,09 ± 0,00 – 0,37 ± 0,00%); umidade
(5,05 ± 0,32 – 9,80 ± 0,68 %) e cinzas (1,94 ± 0,00 – 4,47 ± 0,02 %),
bromatológicas: bra bruta (13,85 ± 0,11 – 24,39 %); proteína (0,16
± 0,00 0,86 ± 0,01 %); matéria seca (88,52 ± 3,51 94,94 ± 0,32
%) e gordura (0,09 ± 0,00 0,13 ± 0,01 %), compostos funcionais
e antioxidantes: hemicelulose (25, 32 ± 0,79 %); celulose (17,90
± 0,05 26,83 ± 0,20 %); lignina (0,31 ± 0,00 0,51 ± 0,00 %);
capacidade de retenção de água (3,27 ± 0,01 – 4,93 ± 0,19 g H
2
O.g
-1
);
atividade antioxidante (3,70 ± 0,03 9,92 ± 9,12 µmol equivalente
trolox.g
-1
) e fenóis totais (2,19 ± 0,00 – 13,35 ± 0,03 mg equivalente
ácido gálico.g
-1
). Todas as amostras eram microbiologicamente
aceitáveis. PBCA apresentou características nutricionais importantes
para formulação de produtos para consumo humano.
Palavras-chave: antioxidantes, fenóis totais, bra, bagaço de cana
em pó.
Introduction
Sugarcane (Saccharum ocinarum L.) is one of the most
important crops in the world, native to Southeast Asia, it is a perennial
grass of the family Poaceae (Largo et al., 2014; Suárez et al., 2018).
In 2020, it had a global production of approximately 166,18 million
metric tons (Jiménez et al., 2023). It is mostly grown in tropical
and subtropical countries in Africa, Asia, Latin America, and the
Caribbean (Velázquez et al., 2021).
In Ecuador, it is estimated that there are 110,000 ha of sugarcane
crops, 74,100 are destined for sugar production and the rest for panela
production (Verdezoto et al., 2021), currently, 98 % is consumed in
the domestic market (Quishpe et al., 2020). The provinces with the
highest cultivation are Guayas, Loja, and Cañar, responsible for 97 %
of the volume produced. However, the province of Manabí has about
1,369 ha planted with sugarcane, of which about 700 hectares are in
the canton of Junín, with an annual production of 45,000 t, which
are mostly destined for the production of aguardientes (Cartay et al.,
2019).
In the sugarcane industry, after its processing, a variety of
agricultural residues are obtained, among which are; bud and green
leaves (8 %), dried pods and leaves (20 %), and industrial by-products
derived from the manufacture, not only panela but also of sugar such
as bagasse, bagacillo, cachaça, melote, molasses and vinasse (Lagos
and Castro, 2019).
Regarding bagasse, about 234 million tons of this waste are
produced worldwide (López et al., 2016). According to Aguilar
(2019), when 100 t of sugarcane are processed, about 30 t of sugarcane
bagasse (ber and pith) are generated. This agroresidue is obtained
after squeezing the stems; and has dierent uses, such as; in the
production of paper, as fuel, in the production of second-generation
ethanol (De la Torre et al., 2021), fertilizers (Arias et al., 2021),
cellulosic products (Torgbo et al., 2021), solid biofuels (Manzini et
al., 2022) and its use as a source of ber in biscuits (Vijerathna et al.,
2019).
Although there are alternatives for industrial use, this waste
continues to be a problem in Ecuador for small sugarcane producers
in the Junín canton in the province of Manabí, who process this
raw material in artisanal mills, through practices transmitted from
generation to generation to obtain dierent derivatives of sugarcane
(aguardientes, sandwiches, panela) (Resano et al., 2022), the
diculty arises because producers only use a part of the by-product as
livestock feed, and the rest is discarded and burned, which generates
environmental pollution and health problems in the inhabitants of
nearby communities.
Indeed, the surplus of sugarcane bagasse causes health, economic,
and environmental problems in society, which is why it is necessary to
give added value through agro-industrial transformation into powder
and subsequently, carry out studies on its chemical composition
to obtain results of scientic quality that allow generating greater
interest in this by-product to be included in food processes for
human consumption. Therefore, this study aimed to characterize
the physicochemical and bromatological properties and antioxidant
activity of powdered sugarcane bagasse (Saccharum ocinarum L.).
Materials and methods
Location of the trial
The process of transforming sugarcane bagasse into powder was
carried out in the Agroindustrial Processes Laboratory, fruit and
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Cabrera et al. Rev. Fac. Agron. (LUZ). 2024 41(2): e2441143-7 |
vegetable area of the Faculty of Agrosciences, Technical University
of Manabí.
The characterization of the physicochemical, bromatological,
antioxidant properties and the microbiological evaluation of sugarcane
bagasse powder was developed in the Biochemistry, Bromatology,
and Microbiology Laboratories of the Faculty of Agrosciences of the
Technical University of Manabí.
Plant material
The plant material of the sugarcane bagasse was obtained from
three micro-enterprises in the Junín canton of the province of Manabí,
the following; Aguardiente de Caña Barreiro (M1); Aguardiente tres
Hermanos (M2) and Aguardiente Santa Ana (M3). Samples were
collected every 24 hours for three days.
Obtaining sugarcane bagasse powder
Samples of sugarcane bagasse were received, which were
collected dry in the open air after the harvest process in the artisanal
mills of the Junín canton, later, they were taken to the laboratory
of agro-industrial processes to carry out the process of obtaining
sugarcane bagasse powder.
The dierent samples of sugarcane bagasse were dehydrated for
six (6) hours at a temperature of 60 °C, for which a dehydrator (BYR
brand) with a capacity of 12 stainless steel trays was used.
The dehydrated samples were added to an electric mill with
stainless steel blades and the dehydrated bagasse was ground for three
(3) minutes; then the PBCA was sieved on a No. 120 sieve to obtain a
particle size of 125 mm; subsequently, the sugarcane bagasse powder
was packaged in vacuum-sealed double-sealed polyethylene plastic
bags and stored at room temperature (28 °C).
Physicochemical, bromatological, and antioxidant properties
A physicochemical, bromatological and antioxidant
characterization was carried out in each sample of sugarcane bagasse
powder through the following analyses; moisture and dry matter by
the method (NTE INEN-ISO 712); acidity by the method (NTE INEN
521); pH (NTE INEN-ISO 1842); ashes (NTE INEN-ISO 2171);
crude ber (AOAC 962.09); protein (NTE INEN-ISO 20483); fat
(NTE INEN-ISO 20483); hemicellulose, cellulose and lignin by test
method (AKOM, AOAC 2002:04/AOAC 973.18) and water-holding
capacity (gravimetric method).
Antioxidant activity was determined using the spectrophotometric/
ABTS method, reported by Re et al. (1999), for this purpose, a
working solution with an absorbance between 0.8 and 1 at 734 nm
was prepared by dissolving the ABTS+ radical stored with methanol
for 16 hours until the established values were achieved, then 1 mL
of sample and control (extract dilution medium) and 1 mL of the
prepared radical were added in a test tube, and it was stirred with the
help of a vortex and left to react for 1 hour. After the established time,
the absorbance was measured at 734 nm using a spectrophotometer
(Evolution
TM
201/220 UV-Vis Thermo Scientic
TM,
Waltham,
Ma, EE. UU). Antioxidant activity was expressed in μmol trolox
equivalent g
-1
of the PBCA sample.
The determination of total phenols was performed following the
spectrophotometric/Folin Ciocalteu method, proposed by Sultana et
al. (2009) with some modications, 200 µL of the standardized sample
was taken, then 1.5 mL of distilled water was added and 100 µL of
Folin-Ciocalteu reagent (phosphomolybdic acid + phosphotungstic
acid) was added, subsequently, it was left to rest for ve (5) minutes,
200 uL of 20 % sodium carbonate m/v was added to the resulting
solution. The solution was allowed to stand for one (1) hour at
room temperature in the dark and then the absorbance reading on
a UV-vis spectrophotometer (Evolution
TM
201/220 UV-Vis Thermo
Scientic
TM,
Waltham, Ma, USA) at 760 nmol. Phenol content was
expressed in mg gallic acid equivalent g
-1
of the PBCA sample.
Microbiological evaluation
The microbiological quality of sugarcane bagasse powder samples
was evaluated by the following analyses: Molds and yeasts using the
NTE INEN 1529-10 AOAC 997.02 method and E. coli using the NTE
INEN 1529-8 AOAC 991.14 test method.
Experimental design and statistical analysis
A completely randomized design with factorial arrangement
was applied, and the factor under study corresponded to samples
of sugarcane bagasse powder (PBCA) from dierent artisanal
microenterprises in the Junín canton. The microenterprises were
named with the codes M1, M2, and M3, three replications were
carried out per sample, obtaining a total of nine (9) experimental units
(table 1).
Table 1. Sugarcane bagasse powder samples (PBCA).
Samples Code Repetitions
1 M1 3
2 M2 3
3 M3 3
Minitab 18 statistical software was used. An analysis of variance
and Tukey’s multiple comparison test were applied at 95 % condence
and 5 % signicance. Results were expressed as mean ± standard
deviation.
Results and discussion
Physicochemical, bromatological, and antioxidant properties
of sugarcane bagasse powder
Table 2 presents the results of the characterization of the
physicochemical properties of sugarcane bagasse powder samples.
It was observed that the variables under study showed statistical
signicance with each other.
A lower pH value (5.96 ± 0.01) was determined at hour 0 for M2
and a higher pH (6.87 ± 0.05) for M1, however, the pH was higher at
24 and 48 hours of evaluation for M2 (7.14 ± 0.05 - 7.12 ± 0.00). The
pH values in this research ranged from acidic to neutral, similar to the
results obtained by Zara et al. (2017) with a pH value of 6.65 ± 0.031
for sugarcane bagasse.
Regarding the acidity of sugarcane bagasse powder, a higher
value was observed for M3 (0.26 ± 0.00 %) at time 0, for M1 0.22
± 0.00 % at 24 hours, and for M2 0.37 ± 0.00 % at 48 hours, this
parameter was variable between samples and times. The acidity levels
are close to the limit required by the NTE INEN 616 (2015) standard
for ours, which indicates a maximum between 0.2 – 0.3 %.
The percentage of moisture at time 0 was higher in M2 presenting
a value of 9.44 ± 1.09 %, on the contrary, at 24 and 48 hours of
evaluation M1 presented higher moisture (9.80 ± 0.68 % 9.35
± 0.55 %), in the three times, M3 was the sample with the lowest
moisture content, these results are within the limit required by the
Ecuadorian regulation NTE INEN 616 (2015) which indicates that
ours must present moisture between 14.5 % - 15 %, the lower the
moisture percentage, the better the conservation of the product.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244114 April-June. ISSN 2477-9407.4-7 |
Ash concentrations were lower at time 0, 24, and 48 hours for M1,
whose results ranged from 2.29 ± 0.07 – 2.08 ± 0.00 – 1.94 ± 0.00 %,
while the highest values were obtained for M3 (0 hours) 4.17 ± 0.00
% and M2 (24 and 48 hours) 4.40 ± 0.07 – 4.47 ± 0.02 %. The values
obtained in this research are below those published by Guilherme et al.
(2015) who determined an ash content in sugarcane bagasse of 8.80 ±
0.02 % (dry basis), which allowed corroborating that this residue can
be reduced when processed into powder. Ash concentrations can vary
according to the climatic and harvest conditions of each producer in
sugarcane crops.
Bromatological analysis of sugarcane bagasse powder
Table 3 shows the results obtained in the determination of the
bromatological properties of sugarcane bagasse powder samples.
The analysis of variance determined that the variables; crude
ber and protein showed statistically signicant dierences (p<0.05).
In dry matter, with the exception of 24 h time, the samples were
statistically signicant (p<0.05). Regarding the fat variable, no
statistical signicance (p>0.05) was observed at time 0 and 48 h,
while at 24 h there was statistical signicance.
According to the results presented in table 3, during the rst
and third crude ber evaluations, the levels of this parameter were
lower (15.13 ± 1.33 % - 13.85 ± 0.11 %) in M1 and higher (19.36
± 0.06 % - 24.39 ± 0.19 %) in M2 at the 24 and 48 h of evaluation,
however, all PBCA samples presented ber levels of importance for
feeding. Studies such as that of Jácome et al. (2023) have shown that
sugarcane can have a crude ber content of up to 27.9 %.
Regarding the protein variable, the values varied between samples,
with M1 being the highest value (0.20 ± 0.01 %) at time 0, however,
the higher values were maintained in the second and third evaluations
in M2 (0.86 ± 0.01 % - 0.50 ± 0.01 %). Selim et al. (2022) determined
a higher protein content in sugarcane bagasse (3.81 ± 0.07 %), i.e.
protein levels can decrease when sugarcane bagasse is converted into
powder. Likewise, Hurtado et al. (2021) reported higher crude protein
contents (3.78 ± 0.09 %) for fermented sugarcane bagasse over 30
days.
Concerning dry matter content, M2 was the PBCA sample with
the lowest content (90.55 ± 1.09 %) at 0 h. However, the sample with
the highest value was M3 during all evaluation times (93.00 ± 0.17
%, 94.34 ± 0.04 %, 94.94 ± 0.32 %), averages that are related to those
published by Gil et al. (2019) who determined the content of 92.50 ±
0.46 % DM for sugarcane bagasse ber.
The fat results were not so variable (0.09 ± 0.00 % - 0.13 ± 0.00
%), the sample with the highest value was M3 between 24 and 48h.
Studies such as that of Vijerathna et al. (2019) determined a higher
fat content (1.04 ± 0.05 %) in sugarcane bagasse powder samples.
It should be noted that the amount of fat present in the sugarcane
bagasse corresponds to the layer of wax found on the outside of the
sugarcane husk.
Functional and antioxidant properties of sugarcane bagasse
powder
Table 4 presents the results of the analysis of variance performed
on the functional and antioxidant prole variables of sugarcane
bagasse powder samples.
No signicant dierences (p>0.05) were observed during time 0
in hemicellulose, 48h in lignin, and 24h in antioxidant activity. There
were signicant dierences in the rest of the variables (p<0.05).
Hemicellulose values ranged from 25.32 ± 0.79 % to 38.65 ± 1.70
%, with M3 having the highest content at 24 and 48h of evaluation.
Regarding the cellulose content, the values were variants, it was
shown that M1 was the one with the lowest value at 0 and 24h (20.33
Table 2. Physicochemical characterization of sugarcane bagasse powder samples.
Physicochemical Parameters PBCA
Evaluation time in hours (h)
0 h 24 h 48 h
pH
M1 6.87 ± 0.05
A
6.93 ± 0.05
B
6.86 ± 0.02
C
M2 5.96 ± 0.01
C
7.14 ± 0.05
A
7.12 ± 0.00
A
M3 6.11 ± 0.01
B
7.02 ± 0.01
B
6.99 ± 0.01
B
Sig. 0.000 0.004 0.000
Acidity (%)
M1 0.16 ± 0.00
C
0.22 ± 0.00
A
0.17 ± 0.00
B
M2 0.25 ± 0.00
B
0.17 ± 0.00
B
0.37 ± 0.00
A
M3 0.26 ± 0.00
A
0.09 ± 0.00
C
0.12 ± 0.00
C
Sig. 0.000 0.000 0.000
Moisture (%)
M1 8.38 ± 0.59
AB
9.80 ± 0.68
A
9.35 ± 0.55
A
M2 9.44 ± 1.09
A
9.61 ± 0.55
A
7.28 ± 1.20
B
M3 6.99 ± 0.17
B
5.65 ± 0.04
B
5.05 ± 0.32
C
Sig. 0.018 0.000 0.002
Ash (%)
M1 2.29 ± 0.07
C
2.08 ± 0.00
B
1.94 ± 0.00
C
M2 2.44 ± 0.07
B
4.40 ± 0.07
A
4.47 ± 0.02
A
M3 4.17 ± 0.00
A
4.31 ± 0.00
A
4.26 ± 0.06
B
Sig. 0.000 0.000 0.000
Averages that do not share a letter in superscripts are signicantly dierent.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Cabrera et al. Rev. Fac. Agron. (LUZ). 2024 41(2): e2441145-7 |
Table 3. Bromatological characterization of sugarcane bagasse powder samples.
Bromatological Parameters PBCA
Evaluation time in hours (h)
0 h 24 h 48 h
Crude ber (%)
M1 15.13 ± 1.33
B
18.39 ± 0.08
B
13.85 ± 0.11
C
M2 18.19 ± 0.02
A
19.36 ± 0.06
A
24.39 ± 0.19
A
M3 19.97 ± 0.66
A
16.57 ± 0.29
C
19.26 ± 0.06
B
Sig. 0.001 0.000 0.000
Protein (%)
M1 0.20 ± 0.01
A
0.16 ± 0.00
B
0.45 ± 0.00
B
M2 0.17 ± 0.00
B
0.86 ± 0.01
A
0.50 ± 0.01
A
M3 0.17 ± 0.00
B
0.85 ± 0.02
A
0.42 ± 0.00
C
Sig. 0.010 0.000 0.000
Dry matter (%)
M1 91.61 ±0.59
AB
88.52 ± 3.51
A
90.64 ± 0.55
C
M2 90.55 ± 1.09
B
93.05 ± 5.06
A
92.71 ± 1.20
B
M3 93.00 ± 0.17
A
94.34 ± 0.04
A
94.94 ± 0.32
A
Sig. 0.018 0.191 0.002
Fat (%)
M1 0.13 ± 0.01
A
0.09 ± 0.00
B
0.11 ± 0.00
A
M2 0.11 ± 0.00
A
0.13 ± 0.00
A
0.11 ± 0.00
A
M3 0.12 ± 0.02
A
0.13 ± 0.00
A
0.13 ± 0.00
A
Sig. 0.330 0.000 0.050
Averages that do not share a letter in superscripts are signicantly dierent.
± 0.13 % - 18.29 ± 0.74 %), however, the sample with the highest
value in cellulose was M2 (26.83 ± 0.20 % - 19.97 ± 0.54 %) at 24 and
48h. According to Ameram et al. (2019), these compounds are found
in the cell wall of sugarcane bagasse biomass.
The results of this study are close to those reported by Widjaja et
al. (2019) who obtained 32.8 % cellulose and 26.3 % hemicellulose
in untreated sugarcane bagasse. According to De Moraes et al.
(2015), the hemicellulose fraction is a heteropolymer of pentose and
hexoses, in which xylans predominate, and the cellulose fraction is
a homopolymer of glucose. Lignocellulosic material contents are of
interest for the production of value-added compounds such as ethanol,
food additives, organic acids, enzymes, antioxidants, and others.
The lignin content was variable (0.31 ± 0.00 % - 0.51 ± 0.00 %)
for the dierent PBCA samples, with M1 having the lowest lignin
content at time 0 and the highest M3 value (0.38 ± 0.03 %), however,
M3 was the one with the lowest value at 24h of evaluation with a
mean of 0.36 ± 0.05 %. Higher lignin values were obtained by Qiu
et al. (2012) in untreated sugarcane bagasse, 24.81 ± 0.14 % in total
lignin, 20.83 ± 0.22 % in acid-insoluble lignin, and 3.98 ± 0.08 %
in acid-soluble lignin. On the other hand, studies such as that of De
Moraes et al. (2015) indicated a variation in lignin between 21.56
± 1.67 % total lignin, 7.38 ± 2.13% soluble lignin, and 1.17 ± 0.06
insoluble lignin. Lignin content is variable within sugarcane plant
populations of the same species.
The highest value of water-holding capacity (WHC) was presented
by M1 at 0 h (4.80 ± 0.30 g H
2
O.g
-1
). At 24 h, M2 was the sample with
the highest value: 4.93 ± 0.19 g H
2
O.g
-1
. However, in all samples of
sugarcane bagasse powder, a range of WHC between 4.50 ± 0.01 and
4.44 ± 0.01 g H
2
O.g
-1
was determined at 24 and 48h.
The PBCA sample with the highest antioxidant activity value was
M2 during the rst two evaluation times (9.92 ± 9.12 7.12 ± 3.27
μmol trolox equivalent.g
-1
), however, at 48h M1 presented a higher
value (9.85 ± 0.12 μmol trolox equivalent.g
-1
). Mohamed et al. (2021)
obtained higher ranges in antioxidant activity for ground sugarcane
bagasse, since they used dierent solvents (ethanol, water-methanol)
to obtain the extracts, presenting values between 26.3 ± 0.21 – 54.0 ±
0.14 % by the DPPH method.
Regarding total phenols, M2 presented a higher content during the
0 and 24 h evaluation time (13.35 ± 0.03 - 11.16 ± 0.01 mg gallic acid
equivalent.g
-1
), however, at 48h, M1 presented a higher value (7.64
± 0.04 mg gallic acid equivalent.g
-1
) compared to the other samples.
Studies conducted by Prasong et al. (2021) determined a variable
total phenolic content in three dierent samples of ground sugarcane
bagasse; AU17 (12.13 ± 0.33 mg GAE); SP50 (6.64 ± 0.00 mg GAE)
and SP72 (8.11 ± 0.28 mg GAE). According to Jiménez et al. (2014),
sugarcane bagasse is a by-product rich in bioactive compounds (total
phenols and antioxidants).
Microbiological quality of sugarcane bagasse powder
Table 5 shows the microbial load present in the dierent samples
of sugarcane bagasse powder.
It was determined that the microorganism molds and yeasts,
maintained a variation between samples from 1.2 x 10
3
9.2 x 10
2
CFU.g
-1
, regarding the count of E. coli, it was demonstrated that the
absence of this pathogen was demonstrated, these results are within
the limit required by the reference standard NTE INEN 616 (2015).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(2): e244114 April-June. ISSN 2477-9407.6-7 |
Table 4. Characterization of the functional and antioxidant parameters of sugarcane bagasse powder samples.
Functional parameters and antioxidants PBCA
Evaluation time in hours
0 h 24 h 48 h
Hemicellulose (%)
M1 26.94 ± 1.74
A
25.32 ± 0.79
B
27.20 ± 2.08
B
M2 25.86 ± 0.24
A
29.40 ± 0.85
A
37.99 ± 1.73
A
M3 26.35 ± 0.40
A
30.80 ± 1.86
A
38.65 ± 1.70
A
Sig. 0.493 0.005 0.000
Cellulose (%)
M1 20.33 ± 0.13
B
18.29 ± 0.74
B
23.99 ± 0.04
A
M2 25.94 ± 1.16
A
26.83 ± 0.20
A
19.97 ± 0.54
B
M3 26.05 ± 0.81
A
26.08 ± 0.29
A
17.90 ± 0.05
C
Sig. 0.000 0.000 0.000
Lignin (%)
M1 0.31 ± 0.00
B
0.51 ± 0.00
A
0.35 ± 0.03
A
M2 0.33 ± 0.00
B
0.42 ± 0.01
B
0.38 ± 0.00
A
M3 0.38 ± 0.03
A
0.36 ± 0.05
B
0.36 ± 0.00
A
Sig. 0.010 0.003 0.087
WHC (g H
2
O.g
-1
)
M1 4.80 ± 0.30
A
4,77 ±0.01
AB
4.10 ± 0.01
B
M2 3.27 ± 0.01
C
4.93 ± 0.19
A
4.14 ± 0.02
B
M3 3.94 ± 0.03
B
4.50 ± 0.01
B
4.44 ± 0.01
A
Sig. 0.000 0.009 0.000
A.A
.
(μmol trolox equivalent.g
-1
)
M1 6.45 ± 0.03
B
7.11 ± 2.21
A
9.85 ± 0.12
A
M2 9.92 ± 9.12
A
7.12 ± 3.27
A
3.70 ± 0.03
B
M3 5.19 ± 0.04
C
3.79 ± 0.17
A
3.78 ± 0.08
B
Sig. 0.000 0.157 0.000
T.P. (mg gallic acid equivalent.g
-1
)
M1 9.43 ± 0.05
B
5.47 ± 0.02B 7.64 ± 0.04
A
M2 13.35 ± 0.03
A
11.16 ± 0.01A 1.70 ± 0.01
C
M3 2.78 ± 0.02
C
2.19 ± 0.00C 2.19 ± 0.03
B
Sig. 0.000 0.000 0.000
Averages that do not share a letter in superscripts are signicantly dierent. WHC: water-holding capacity. A.A: antioxidant activity. T.P.: total phenols.
Table 5. Microbiological characterization of sugarcane bagasse powder
Microorganisms PBCA
Evaluation time in hours (h)
0 h 24 h 48 h
Molds and yeasts
M1 2.8x10
2C
2.4x10
3A
3.7x10
3B
M2 4.8x10
3B
2.3x10
3A
4.0x10
3A
M3 9.2x10
2A
1.2x10
3B
3.5x10
3C
Sig. 0.000 0.000 0.000
Escherichia coli
M1 0.0x10 0.0x10 0.0x10
M2 0.0x10 0.0x10 0.0x10
M3 0.0x10 0.0x10 0.0x10
Sig. sd sd sd
Averages that do not share a letter in superscripts are signicantly dierent. sd: No dierence.
Conclusions
The dierent samples of sugarcane bagasse powder presented
a characterization of the physicochemical, bromatological, and
antioxidant properties of importance for the agri-food sector. Its
composition highlights its high value in antioxidant activity, total
phenols and crude ber, which makes this by-product a possible
viable alternative as an input in the bakery industry due to its quality
of nutritional compounds, however, it is advisable to evaluate toxic
substances from fertilizers and insecticides that may have been used
in sugarcane crops.
Literature Cited
Aguilar, N. (2019). A framework for the analysis of socioeconomic and geographic
sugarcane agro industry sustainability. Socio-Economic Planning
Sciences, 66, 149-160. doi.org/10.1016/j.seps.2018.07.006
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Cabrera et al. Rev. Fac. Agron. (LUZ). 2024 41(2): e2441147-7 |
Ameram, N., Muhammad, S., & Ter, T. (2019). Chemical composition in sugarcane
bagasse: Delignication with sodium hydroxide. Malaysian Journal of
Fundamental and Applied Sciences, 15(2), 232-236. doi.org/10.11113/
mjfas.v15n2.1118
Arias, Q., López, R., Sainz, L., Verdecia, M., & Eichler, B. (2021). Potencial
fertilizante de cenizas de bagazo de caña de azúcar de industrias
azucareras. Revista Cubana de Química, 33(3), 452-466. http://scielo.sld.
cu/scielo.php?script=sci_arttext&pid=S2224-54212021000300452&Ing
=es&tlng=es
Cartay, R., García, M., Meza, D., Intriago, J., & Romero, F. (2019). Caracterización
económica de un productor de aguardiente en Junín, Manabí, Ecuador.
Revista ECA Sinergia, 10(1), 85-97. doi.org/10.33936/eca_sinergia.
v10i1.1213
De la Torre, L., Tavera, M., & Mena, X. (2021). Desarrollo sustentable
y aprovechamiento del residuo de la caña de azúcar. Revista
Multidisciplinaria de Avances de Investigación, 7(1), 12-26. https://www.
remai.ipn.mx/index.php/REMAI/article/view/79
De Moraes, G., Nascimento, V., & Gonçalves, A., Nunes, V., Martín, C. (2015).
Inuence of mixed sugarcane bagasse samples evaluated by elemental
and physical–chemical composition. Industrial Crops and Products, 64,
52-58. doi.org/10.1016/j.indcrop.2014.11.003
Gil, D.I., Correa, J., Lois, J.A., Sánchez, M.E., Domínguez, M.A., Torres, A.M.,
Rodríguez, A.E., & Orta, V.N. (2019). Production of dietary bers from
sugarcane bagasse and sugarcane tops using microwave-assisted alkaline
treatments. Industrial Crops & Products, 135, 159-169. doi.org/10.1016/j.
indcrop.2019.04.042
Guilherme, A., Dantas, P., Santos, E., Fernandes, F., & Macedo, G. (2015).
Evaluation of composition, characterization and enzymatic hydrolysis of
pretreated sugar cane bagasse. Brazilian Journal of Chemical Engineering,
32 (1), 23-33. doi.org/10.1590/0104-6632.20150321s00003146
Hurtado, E., Vélez, R., Ruisdael, A., Vargas, B., Geovanny, E., & Macías, E.
(2021). Efectos de la amonicación y tiempo de fermentación sobre la
composición bromatológica del bagazo de caña de azúcar. Zootecnia
Tropical, 39, 1-8. doi:10.5281/zenodo.5092155
Jácome, C., García, R., Guevara, L., & Moreta, T. (2023). Revalorización del
bagazo de caña de azúcar (Saccharum ocinarum) como residuo
importante para la agroindustria. 593 Digital Publisher CEIT, 8(3), 134-
148. doi.org/10.33386/593dp.2023.3.1661
Jiménez, R., González, N., & Ojeda, N. (2014). La caña de azúcar como alimento
funcional. Revista Iberoamericana de Ciencias, 1(3), 31-39. http://reibci.
org/publicados/2014/agosto/3300112.pdf
Jiménez, M., Vázquez, P., & Rodríguez, I. (2023). Respuesta agronómica del
cultivo de la caña de azúcar (Sacharum ocinarum L.) bajo el efecto de
Quitomax®. Revista Cientíca Agroecosistemas, 11(1), 172-179. https://
aes.ucf.edu.cu/index.php/aes/article/view/613
Lagos, E., & Castro, E. (2019). Caña de azúcar y subproductos de la agroindustria
azucarera en la alimentación de rumiantes. Agronomía Mesoamericana,
30(3), 917-934. doi.org/10.15517/am.v30i3.34668
Largo, E., Cortes, M., & Ciro, H. (2014). The adsorption thermodynamics of
sugarcane (Saccharum ocinarum L.) powder obtained by spray drying
technology. Vitae, Revista de la Facultad de Química Farmacéutica,
21(3), 165-177. doi.org/10.17533/udea.vitae.15462
López, A., Bolio, G., Veleva, L., Solórzano, M., Acosta, G., Hernández, M.,
Salgado, S., & Córdova, S. (2016). Obtención de celulosa a partir de
bagazo de caña de azúcar (Saccharum spp.). Agro Productividad, 9(7), 41-
46. https://revista-agroproductividad.org/index.php/agroproductividad/
article/view/784
Manzini, F., Islas, J., García, C., Sacramento, J., Grande, G., Gallardo, R., Musule,
R., Navarro F., & Alvarez, C. (2022). Sustainability Assessment of Solid
Biofuels from Agro-Industrial Residues Case of Sugarcane Bagasse in
a Mexican Sugar Mill. Sustainability, 14 (3), 1-10. doi.org/10.3390/
su14031711
Mohamed, R., Rashad, M., Saad, S., & Abedelmaksoud, T. (2021). Utilization
of sugarcane bagasse aqueous extract as a natural preservative to extend
the shelf life of refrigerated fresh meat. Brazilian Journal of Food
Technology, 1-9. doi.org/10.1590/1981-6723.16720
NTE INEN 616. (2015). Harina de trigo. Requisitos. Obtenido de https://docplayer.
es/32084179-Nte-inen-616-cuarta-revision.html
Prasong, S., Thonpho, A., Panadda, S.,& Phongsathorn, M. (2021). Phytochemicals
and antioxidant activity in sugarcane (Saccharum ocinarum L.) bagasse
extracts. Suan Sunandha Science and Technology Journal, 8 (2), 26-35.
https://li02.tci-thaijo.org/index.php/ssstj/article/view/217
Qiu, Z., Aita, G., & Walker, M. (2012). Eect of ionic liquid pretreatment on
the chemical composition, structure and enzymatic hydrolysis of energy
cane bagasse. Bioresource Technology, 117, 251-256. doi.org/10.1016/j.
biortech.2012.04.070
Quishpe, J., Valle, L., & Heredia, M. (2020). Evaluación nanciera de los pequeños
productores de caña de azúcar en el sur del Ecuador. AXIOMA - Revista
Cientíca de Investigación, Docencia y Proyección Social (23), 61-67.
https://axioma.pucesi.edu.ec/index.php/axioma/article/view/629
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice, C.
(1999). Antioxidant activity applying an improved ABTS radical cation
decolorization assay. Free Radical Biology and Medicine, 26(10), 1231-
1237. doi.org/10.1016/s0891-5849(98)00315-3
Resano, D., Guillen, O., Ubillús, F., & Barranzuela, J. (2022). Caracterización
sicoquímica del bagazo de caña de azúcar industrial y artesanal como
material de construcción. Información tecnológica, 33(2), 247-258. doi.
org/10.4067/S0718-07642022000200247
Selim, A., Hasan, N., Rahman, A., Rahman, M., Islam, R., Bostami, R., Islam, S.,
& Tedeschi, L. (2022). Nutrient content and in vitro degradation study
of some unconventional feed resources of Bangladesh. Heliyon, 8(5),1-7.
doi.org/10.1016/j.heliyon.2022.e09496
Suárez, O., Suárez, H., Hernández, A., & Alvarez, M. (2018). Evaluación de
la cepa primer retoño, como semilla categorizada en caña de azúcar
(Saccharum spp) en la Empresa Azucarera Cienfuegos. Revista cientíca
Agroecosistemas, 6(2), 134-139. https://aes.ucf.edu.cu/index.php/aes/
article/view/203
Sultana, B., Anwar, F., & Ashraf., M. (2009). Eect of extraction solvent/technique
on the antioxidant activity of selected medicinal plant extracts. Molecules,
14(6), 2167-2180. doi.org/10.3390/molecules14062167
Torgbo, S., Quan, V., & Sukyai, P. (2021). Cellulosic value-added products from
sugarcane bagasse. Cellulose, 28, 5219–5240. doi.org/10.1007/s10570-
021-03918-3
Velázquez, V., Valles, D., Rodríguez, L., Holguín, O., Quintero, J., Reyes, D.,
& Delgado, E. (2021). Antimicrobial, shelf-life stability, and eect of
maltodextrin and gum arabic on the encapsulation eciency of sugarcane
bagasse bioactive compounds. Foods, 10(1), 116-123. doi.org/10.3390/
foods10010116
Verdezoto, L., Parco, F., Jácome, C., Katan, W., & Mora, A. (2021). Energía
renovable a partir de la biomasa de la caña de azúcar. Revista de
Investigación Talentos, VIII(1), 1-18. doi.org/10.33789/talentos.8.1.140
Vijerathna, M., Wijesekara, I., Perera, R., Maralanda, S., Jayasinghe, M., &
Wichramasinghe, I. (2019). Physico-chemical characterization of cookies
supplemented with sugarcane bagasse bers. Vidyodaya Journal of
Science, 22(1), 29-39. doi.org/ 10.4038/vjs.v22i1.6062
Widjaja, A., Agnesti, S., Hamzah, A., & Sangian, H. (2019). Biohydrogen
production from sugarcane bagasse pretreated with combined alkaline
and ionic liquid [DMIM] DMP. Malaysian Journal of Fundamental and
Applied Sciences, 15(5), 663 - 670. doi.org/10.11113/mjfas.v15n5.1317
Zara, J., Yegres, F., Vargas, N., Cubillan, L., Navas, P., & Márquez, R. (2017).
Empleo de la Espectroscopia Infrarroja (FT-IR-ATR) como herramienta
para la aracterización del bagazo de caña proveniente de la Sierra
Falconiana. Química Viva, 16(3), 17-24. https://www.redalyc.org/articulo.
oa?id=86354619003