This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Pérez et al. Rev. Fac. Agron. (LUZ). 2023, 40 (Supplement): e2340Spl04
5-6 |
several classes of secondary metabolites including terpenes, complex
phenols, and alkaloids during in vitro and in vivo growth through the
induction of ionic or osmotic stress.
Conclusion
Guava is a plant rich in secondary metabolites, particularly
phenolic compounds, such as phenols and avonoids, with biological
anti-inammatory, antimicrobial and antioxidant properties. Scientic
papers on the phenology of P. guajava were found less frequently
than expected. However, it is a characteristic that deserves attention
because it allows the development of agronomic management
techniques to support crop production. Scientic studies have shown
that P. guajava is a highly productive species of secondary metabolites
under stress conditions. The production of secondary metabolites of
the plant could be a useful indicator for the characterization of its
production of agroindustrial and pharmaceutical importance and,
therefore, would constitute a useful tool in the selection process.
Literatura citada
Appiah, K. S., Omari, R. A., Onwona-Agyeman, S., Amoatey, C. A., Ofosu-
Anim, J., Smaoui, A., Arfa, A. B., Suzuki, Y., Oikawa, Y., Okazaki, S.,
Katsura, K., Isoda, H., Kawada, K., & Fujii, Y. (2022). Seasonal changes
in the plant growth-inhibitory eects of rosemary leaves on lettuce
seedlings. Plants, 11(5), 673. Doi: 10.3390/plants11050673
Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics
as a tool to investigate abiotic stress tolerance in plants. International
Journal of Molecular Sciences, 14(3), 4885-4911. Doi: 10.3390/
ijms14034885
Azad, M. O. K., Kjaer, K. H., Adnan, M., Naznin, M. T., Lim, J. D., Sung, I. J.,
Park, C. H., & Lim, Y. S. (2020). The evaluation of growth performance,
photosynthetic capacity, and primary and secondary metabolite content
of leaf lettuce grown under limited irradiation of blue and red led
light in an urban plant factory. Agriculture, 10(2), 28. Doi: 10.3390/
agriculture10020028
Baskar, V., Venkatesh, R., & Ramalingam, S. (2018). Flavonoids (Antioxidants
Systems) in higher plants and their response to stresses. In: D. Gupta, J.
Palma, F. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher
Plants (pp. 253-268). Springer, Cham. Doi: 10.1007/978-3-319-75088-
0_12
Biondi, D., Leal, L., & Batista, A. C. (2007). Fenologia do orescimento
e fruticação de espécies nativas dos Campos. Acta Scientiarum.
Biological Sciences, 29(3), 269-276. https://www.redalyc.org/articulo.
oa?id=187115762005
Böttger, A., Vothknecht, U., Bolle, C., & Wolf, A. (2018). Plant secondary
metabolites and their general function in plants. In: Lessons on Caeine,
Cannabis & Co: Plant-derived drugs and their interaction with human
receptors. Learning Materials in Biosciences (pp. 3-17). Springer, Cham.
Doi: 10.1007/978-3-319-99546-5_1
Camarena-Tello, J., Martínez-Flores, H., Garnica-Romo, M., Padilla-Ramírez, J.,
Saavedra-Molina, A., Alvarez-Cortes, O., Bartolomé-Camacho, M., &
Rodiles-López, J. (2018). Quantication of phenolic compounds and in
vitro radical scavenging abilities with leaf extracts from two varieties of
Psidium guajava L. Antioxidants, 7(3), 34. Doi: 10.3390/antiox7030034
Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013).
Plant phenolics: recent advances on their biosynthesis, genetics, and
ecophysiology. Plant Physiology and Biochemistry, 72, 1-20. Doi:
10.1016/j.plaphy.2013.05.009
Chiveu, J., Naumann, M., Kehlenbeck, K., & Pawelzik, E. (2019). Variation in
fruit chemical and mineral composition of Kenyan guava (Psidium
guajava L.): Inferences from climatic conditions, and fruit morphological
traits. Journal of Applied Botany and Food Quality, 92, 151-159. Doi:
10.5073/JABFQ.2019.092.021
Coutinho, A. (2013). Extração de tanino em folhas, sementes e frutos
verdes de cinamomo (Melia azedarach L.) com diferentes tipos de
solventes (Bachelor’s thesis, Universidade Tecnológica Federal do
Paraná). http://repositorio.utfpr.edu.br/jspui/handle/1/6501
da Fontoura Custódio Monteiro, V., Dias Gonçalves, E., Abreu Moura, P. H.,
Vieira da Silva, L., Bolzan Martins, F., & Norberto, P. M. (2021). Estágios
fenológicos da goiabeira ‘Paluma’ em região de clima subtropical de acordo
com a escala BBCH. Revista Brasileira De Ciências Agrárias, 16(3), 1-8.
Doi: 10.5039/agraria.v16i3a177
Esparza, D., Tong, F., Parra, G., Sosa, L., & Petit, D. (1993). Caracterización de la
producción de guayaba, Psidium guajava L., en una granja del Municipio
Mara del Estado Zulia. Revista de la Facultad de Agronomía de la
Universidad del Zulia, 10(Suplemento 1), 53-54.
Espinosa-Leal, C. A., Mora-Vásquez, S., Puente-Garza, C. A., Alvarez-Sosa, D.
S., & García-Lara, S. (2022). Recent advances on the use of abiotic stress
(water, UV radiation, atmospheric gases, and temperature stress) for the
enhanced production of secondary metabolites on in vitro plant tissue
culture. Plant Growth Regulation, 97(1), 1-20. Doi: 10.1007/s10725-022-
00810-3
Ferreira, M. D. C., Martins, F. B., Florêncio, G. W., & Pasin, L. A. (2019). Cardinal
temperatures and modeling of vegetative development in guava. Revista
Brasileira de Engenharia Agrícola e Ambiental, 23(11), 819-825. Doi:
10.1590/1807-1929/agriambi.v23n11p819-825
Fisher, G., & Orduz-Rodríguez, O. (2012). Ecosiología en frutales. En: G. Fisher,
L.M. Melgarejo, D. Miranda (Eds.). Manual para el cultivo de frutales en
el trópico. (pp. 54-72). Produmedios.
Fotirić, M. F., Tosti, T., Sredojević, M., Milivojević, J., Meland, M., & Natić,
M. (2019). Comparison of sugar prole between leaves and fruits of
blueberry and strawberry cultivars grown in organic and integrated
production system. Plants, 8(7), 205. Doi: 10.3390/plants8070205
Gómez, R. (1995). Manejo agronómico del cultivo del guayabo en Colombia (No.
Doc. 24646) CO-BAC, Bogotá.
Huyskens-Keil, S., Eichholz-Düdar, L., Hassenberg, K., & Herppich, W.B. (2020).
Impact of light quality (White, red, blue light and UV-C irradiation) on
changes in antocyanin content and dynamics of PAL and POD activities
in apical and basal spear sections of White asparagus after harvest.
Postharvest Biology and Thechnology, 161, 111069. Doi: 10.1016/j.
postharvbio.2019.111069
Isah, T. (2019). Stress and defense responses in plant secondary metabolites
production. Biological Research, 52(39), 1-25. Doi: 10.1186/s40659-
019-0246-3
Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K. M. (2021). Plant secondary
metabolite biosynthesis and transcriptional regulation in response to
biotic and abiotic stress conditions. Agronomy, 11(5), 968. Doi: 10.3390/
agronomy11050968
Jassal, K., & Kaushal, S. (2019). Phytochemical and antioxidant screening
of guava (Psidium guajava) leaf essential oil. Agricultural Research
Journal, 56(3), 528-533. Doi: 10.5958/2395-146X.2019.00082.6
Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., & Denno, R. F. (2008).
Constitutive and induced defenses to herbivory in above‐and belowground
plant tissues. Ecology, 89(2), 392-406. Doi: 10.1890/07-0471.1
Lattanzio, V. (2013). Phenolic Compounds: Introduction. In: K. Ramawat, J.
Mérillon (Eds.), Natural Products (pp. 1543-1580). Springer. Doi:
10.1007/978-3-642-22144-6_57
Li, X., Li, B., Min, D., Ji, N., Zhang, X., Li, F., & Zheng, Y. (2021).
Transcriptomic analysis reveals key genes associated with the
biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus
undatus). Postharvest Biology and Technology, 181, 111684. Doi:
10.1016/j.postharvbio.2021.111684
Li, Y., Xu, J., Li, D., Ma, H., Mu, Y., Zheng, D., Huang, X., & Li, L. (2021).
Chemical characterization and hepatoprotective eects of a standardized
triterpenoid-enriched guava leaf extract. Journal of Agricultural and
Food Chemistry, 69(12), 3626-3637. Doi: 10.1021/acs.jafc.0c07125
Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X., & Chen, Q. (2018). Determination
of phenolic compounds and antioxidant activities from peel, esh, seed of
guava (Psidium guajava L.). Electrophoresis, 39(13), 1654-1662. Doi:
10.1002/elps.201700479
Lustre, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios
en su adaptación y defensa. Revista Digital Universitaria, 23(2). Doi:
10.22201/cuaieed.16076079e.2022.23.2.10
Mamani de Marchese, A., & Filippone, M. P. (2018). Bioinsumos: componentes
claves de una agricultura sostenible. Revista agronómica del noroeste
argentino, 38(1), 9-21. https://ranar.faz.unt.edu.ar/index.php/ranar/
article/view/36/29
Marín, M., Casassa, A., Pérez, E., González, C., Chirinos, D., González, C., &
Sandoval, L. (2004). Enmiendas orgánicas para la recuperación de
árboles de guayabo (Psidium guajava L.) infestados con Meloidogyne
incognita. I. Variación de características fenológicas. Revista de la
Facultad de Agronomía de la Universidad del Zulia, 21(Supl. 1), 129-
136. https://www.produccioncienticaluz.org/index.php/agronomia/
article/view/26529
Marín, M., Casassa, A., Rincón, A., Labarca, J., Hernández, Y., Gómez, E., Viloria,
Z., Bracho, B., & Martínez, J. (2000). Comportamiento de tipos de guayabo
(Psidium guajava L.) injertados sobre Psidium friedrichsthalianum Berg-
Niedenzu. Revista de la Facultad de Agronomía de la Universidad del
Zulia, 17(5), 384-392. https://www.produccioncienticaluz.org/index.
php/agronomia/article/view/26369
Mendes, L. A., Martins, G. F., Valbon, W. R., de Souza, T. D. S., Menini, L.,
Ferreira, A., & da Silva Ferreira, M. F. (2017). Larvicidal eect of essential
oils from Brazilian cultivars of guava on Aedes aegypti L. Industrial
Crops and Products, 108, 684-689. Doi: 10.1016/j.indcrop.2017.07.034
Mendoza, I., Peres, C., & Morellato, L. (2017). Continental-scale patterns and
climatic drivers of fruiting phenology: A quantitative neotropical
review. Global and Planetary Change, 148, 227-241. Doi: 10.1016/j.
gloplacha.2016.12.001