This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Estrada et al. Rev. Fac. Agron. (LUZ). 2023 40(4): e234036
6-7 |
the dry season ranges from 0.10 to 0.70 and it can be elucidated that
the NDVI range found for the grasslands of the Kayra Agronomic
Center is lower, despite being located in a humid zone. These results
are also lower than those found by Paredes (2019) for the grasslands
of the central grasslands of Peru, with the assistance of the Modis
Terra sensor (table 3).
Table 3. Plant Community area and NDVI.
Plant community Area (ha) NDVI
Hillside grassland 840.00 0.02 – 0.20
Shrub grassland 325.00 0.20 – 0.30
Grassland forest 621.00 0.30 – 0.40
Agricultural crops 39.80 0.40 – 0.44
NDVI: Normalized dierence vegetation index
Animal carrying capacity per community, plant ecosystem,
and study area
Condition and animal carrying capacity were estimated from
grazing areas used at the time of assessment. Each of the three
grazing zones was composed of the ecosystems of hillside grassland,
natural forest and plantations in massifs, agricultural ecosystem, and
constructed landscape.
The study determined that the condition of the pasture (table 4) in
the Kayra Agronomic Center, considering cattle, sheep, and alpacas,
is regular, showing that the Perolpuquio area has poor grasslands and
the Fierroccata and Chequicocha areas have regular condition. The
poor condition of the Perolpuquio area was mainly due to the res
that occurred in 2020 and 2021.
Table 4. Condition and animal carrying capacity per study area.
Study area
Pasture Condition
Animal Carrying
Capacity
Cattle Sheep Alpaca
Cattle
(UV.year
-1
)
Sheep
(UO.year
-1
)
Alpaca
(AU.year
-1
)
Perolpuquio Poor Poor Poor 0.13 0.5 0.33
Fierroccta Regular Regular Regular 0.38 1 1.5
Chequilccocha Regular Regular Regular 0.38 1 1.5
KAC Regular Regular Regular 0.30 0.83 1.11
KAC: Kayra Agronomic Center
The condition of the pasture in the Kayra Agronomic Center
for the study period was 0.30 UV.year
-1
, 0.83 UO.year
-1
and 1.11
UA.year
-1
, while for the Perolpuquio area, the carrying capacity for
cattle was 0.13
UV.year
-1
; 0.50 UO.year
-1
and 0.33
UA.year
-1.
In the
areas of Fierroccata and Chequiccocha it was 0.38 UV.year
-1,
1.11
UO.year
-1,
and 0.33 UA.year
-1
for cattle.
It was determined that the grasslands of the Kayra Agronomic
Center have a carrying capacity with a tendency from regular to low
or poor (table 4). Considering the ecosystem and climate map, it can
be noted that these grasslands are below the parameters established
by MINAM (2016) and show the eects of disturbances such as
grassland burning, res, and overgrazing (Chavez et al., 2017;
Pizarro, 2017; Zorogasúa et al., 2012).
Conclusions
The use of satellite images and high-resolution orthophotographs
from the Kayra Agronomic Center, taken with unmanned aerial
vehicles, made it possible to qualify ecosystems and develop land
cover maps with high precision.
The study has identied four microecosystems that can be used as
a basis for soil management at the Kayra Agronomic Center.
Acknowledgment
Our special thanks to the Laboratory of Animal Science and
Climate Change, remote sensing area, and unmanned aerial vehicles of
the Professional School of Zootechnics of the Faculty of Agricultural
Sciences of the National University of Saint Anthony the Abbot in
Cusco.
Literature cited
Chavez Castillo, E., Paz Pellat, F., & Bolaños González, M. A. (2017). Estimación
de biomasa y cobertura aérea usando radiometría e imágenes digitales a
nivel de campo en pastizales y matorrales. Revista Terra Latinoamericana,
35(3), 247. https://doi.org/10.28940/terra.v35i3.133
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004).
A simple method for reconstructing a high-quality NDVI time-series data
set based on the Savitzky-Golay lter. Remote Sensing of Environment,
91(3–4), 332–344. https://doi.org/10.1016/j.rse.2004.03.014
Comer, P.J., Young, B., Schulz, K., Kittel, G., Unnasch, B., Braun, D., Hammerson,
G., Smart, L., Hamilton, H., Auer, S., Smyth, R., & Hak, J. (2012).
Climate Change Vulnerability and Adaptation Strategies for Natural
Communities: Piloting methods in the Mojave and Sonoran deserts.
Report to the US Fish. Report to the U.S. Fish and Wildlife Service.
NatureServe, Arlington, VA, September.https://transfer.natureserve.org/
download/Longterm/Ecology/HCCVI/DesertLCCpilot/NatureServe_
HCCVI_Report.pdf
D’Oleire-Oltmanns, S., Marzol, I., Peter, K. D., & Ries, J. B. (2012). Unmanned
aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote
Sensing, 4(11), 3390–3416. https://doi.org/10.3390/rs4113390
Estrada Zúñiga, A. C., Cárdenas, J., Bejar, J.V., & Ñaupari, J. (2022). Biomass
estimation of a high Andean plant community with multispectral
images acquired using UAV remote sensing and Multiple Linear
Regression, Support Vector Machine and Random forest models.
Scientia Agropecuaria, 13(3), 301–310. https://doi.org/10.17268/sci.
agropecu.2022.027
Estrada Zúñiga, A. C., & Ñaupari Vásquez, J. (2021). Detección e identicación
de comunidades vegetales altoandinas, Bofedal y Tolar de Puna Seca
mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos
no Tripulados.” Scientia Agropecuaria, 12(3), 291–301. http://dx.doi.
org/10.17268/sci.agropecu.2021.032.
Fuhlendorf, S. D., Archer, S. A., Smeins, F., Engle, D. M., & Taylor, C. A. (2012).
The Combined Inuence of Grazing, Fire, and Herbaceous Productivity
on Tree–Grass Interactions. 219–238. https://doi.org/10.1007/978-0-387-
34003-6_12
Holdrigde, L. (1978). Ecología basada en zonas de vida. IICA.
Lussem, U., Bolten, A., Menne, J., Gnyp, M. L., Schellberg, J., & Bareth, G.
(2019). Estimating biomass in temperate grassland with high resolution
canopy surface models from UAV-based RGB images and vegetation
indices. Journal of Applied Remote Sensing, 13(03), 1. https://doi.
org/10.1117/1.jrs.13.034525
Melville, B., Lucieer, A., & Aryal, J. (2019). Classication of lowland native
grassland communities using hyperspectral unmanned aircraft system
(Uas) imagery in the tasmanian midlands. Drones, 3(1), 1–12. https://doi.
org/10.3390/drones3010005
Meneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). Uso De Drones
Para El Analisis De Imágenes Multiespectrales En Agricultura De
Precisión. @limentech, Ciencia y Tecnología Alimentaria, 13(1). https://
doi.org/10.24054/16927125.v1.n1.2015.1647
Ministerio del Ambiente MINAM. (2016). Guía complementaria para la
compensación ambiental: Ecosistemas Altoandinos. Resolución
Ministerial N° 183-2016-MINAM, 27446, 5–41. https://www.minam.gob.
pe/wp-content/uploads/2016/07/RM-N%C2%B0-183-2016-MINAM1.
pdf
Muñoz Gómez, F. A., Galicia Sarmiento, L., & Pérez, E. H. (2018). Agricultura
migratoria conductor del cambio de uso del suelo de ecosistemas
alto-andinos de colombia. Biotecnoloía En El Sector Agropecuario y
Agroindustrial, 16(1), 15. https://doi.org/10.18684/bsaa(16)15-25