This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Montaña et al. Rev. Fac. Agron. (LUZ). 2023 40(4): e234035
5-6 |
The response surface method provided a statistically validated
predictive model, which through adjustments was adapted to
an established optimization process. For the variable “yield”, a
maximum response was found with the application of 150 kg.ha
-1
of
N and 90 kg.ha
-1
of P. In relation to the number of grains per square
meter (g.m
2
), the optimum was obtained using 75,000 plants.ha
-1
and
an applied dose of 150 kg.ha
-1
.
Conclusions
The present study demonstrates that the response surface
methodology is a valuable tool to optimize maize yield in Venezuela.
The results indicate that planting density and the amount of
nitrogen are key factors aecting maize yield, and that the optimal
planting density to maximize the number of grains per square meter
was 75,000 plants per hectare. In addition, it was found that the
improvement in the t of the model, from 89.79 % to 93.5 %, is
signicant and demonstrates the eectiveness of the response surface
methodology in optimizing maize yield. These results are important
for corn production in Venezuela since corn is an essential crop for
the economy and diet of the population.
Increasing the yield per hectare can improve the economy of
Venezuela and guarantee the food security of the population. In
addition, improving the quality of corn production can reduce the
need to import corn from other countries, which can have a positive
impact on the trade balance not only locally, but also regionally.
Cited literature
Barrios, M., and Basso, C. (2018). Eect of nitrogen fertilization on yield
components and grain nutritional quality of six maize hybrids. Bioagro,
30(1), 39-48. http://ve.scielo.org/pdf/ba/v30n1/art04.pdf
Bouras, H., Bouaziz, A., Choukr-Allah, R., Hirich, A., Devkota, K. & Bouazzama,
B. (2021). Phosphorus fertilization enhances productivity of forage corn
(Zea mays L.) Irrigated with Saline Water. Plants (Basel, Switzerland),
10(12), 2608. https://doi.org/10.3390/plants10122608
Box, G. and Behnken, D. (1960). Some new three-level designs for the study of
quantitative variables. Technometrics, 30 (1960), pp. 1-40.https://doi.org/
10.1080/00401706.1960.10489912
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022).
Global maize production, consumption and trade: trends and R&D
implications. Food Security, 14, 1295–1319. https://doi.org/10.1007/
s12571-022-01288-7
FAO-ESS. (2021). Estadísticas de Cultivos: Conceptos, Deniciones y
Clasicaciones. División de Estadística de la FAO (ESS), Roma.
https://www.fao.org/economic/the-statistics-division-ess/methodology/
methodology-systems/crops-statistics-concepts-definitions-and-
classications/en/.
Ganugi, P., Fiorini, A., Rocchetti, G., Bonini, P., Tabaglio, V., & Lucini, L. (2022).
A response surface methodology approach to improve nitrogen use
eciency in maize by an optimal mycorrhiza-to-Bacillus co-inoculation
rate. Frontiers in Plant Science, 13, 956391. https://doi.org/10.3389/
fpls.2022.956391
Gómez, N., Palemón, F., Reyes, G., Hernández, C., Cantú, M., Juárez, P.
&Ascencio, A. (2016). Rendimiento de grano y características fenotípicas
de maíz: efecto de ambiente y dosis de fertilización. Revista Mexicana De
Ciencias Agrícolas, 7(8), 1801–1813. https://doi.org/10.29312/remexca.
v7i8.93
Guo, J., Wang, Y., Fan, T.; Chen, X. & Cui, Z. (2016). Designing corn management
strategies for high yield and high nitrogen use eciency. Agronomy
Journal 108(2):922-929. https://doi.org/10.2134/agronj2015.0435
Jun, X., Rui-Zhi, X., Wang-Feng, Z., Ke-Ru, W., Peng, H., Bo, M., Ling, G. &
Shao-Kun, L. (2017). Research progress on reduced lodging of high-yield
and -density maize. Journal of Integrative Agriculture, 16(12):2717-
2725. https://doi.org/10.1016/S2095-3119(17)61785-4
Martínez U., Raúl A., Kolln, O. & de Castro, G. (2017). Evaluación de la densidad
de plantas, componentes fenológicos de producción y rendimiento de
granos en diferentes materiales genéticos de maíz. Idesia (Arica), 35(3),
23-30. https://dx.doi.org/10.4067/S0718-34292017005000401
Table 5. Analysis of variance for the variable “number of grains
per square meter” (g.m
2
).
df
Sum of
squares
Mean
squares
Fc p
Model 9 215407 23934 4.95 0.0468
Density 1 8522 9522 1.97 0.2854
Nitrogen 1 32381 32381 6.69 0.0491*
Phosphorus 1 5555 6555 1.35 0.0818
Density*density 1 34416 34416 7.11 0.0445*
Nitrogen*nitrogen 1 116768 116768 24.13 0.0044*
Phosphorus*phosphorus 1 2725 2725 0.56 0.4879
Interactions 3 15040 5013 1.04 0.2491
Error 5 24200 4840
Lack of adjustment 3 18080 6027 1.97 0.6321
Pure error 2 6121 3060
TOTAL 14 239607
Adjustment: 89.79 %; * p< 0.05
Table 6. Adjusted analysis of variance for the variable “number
of grains per square meter” (g.m
2
).
df
Sum of
Squares
Middle
Squares Fc p
Modelo 3 183656 61219 12.02 0.0008*
Nitrógeno 1 32381 32381 6.36 0.0283*
Densidad*-
densidad
1 34416 34416 6.76 0.0247*
Nitrógeno*-
nitrógeno
1 116768 116768 22.92 0.0001*
Error 11 56042 5095
Total 14 239607
Adjustment: 93.5 %; *signicant dierence at 5 %.
Figure 2. Response surface for the response variable “grain”
(g.m
2
).