© The Authors, 2023, Published by the Universidad del Zulia*Corresponding author: palacios@uabcs.mx
Keywords:
Biostimulant
Abiotic stress
Development promoter
Effect of chitosan on growth and productive parameters in broccoli plants (Brassica
oleracea L. var. Calabrese)
Efecto del quitosano sobre parámetros de
crecimiento y productivos en plantas de brócoli (Brassica
oleracea L. var. Calabrese)
Efeito da quitosana no crescimento e parâmetros produtivos em plantas de broccoli (Brassica
oleracea L. var. Calabrese)
Juan Jose Reyes-Perez
1
Bernardo Murillo-Amador
2
Ramon Klever Macias Pettao
3
Moisés Arturo Menacé Almea
1
Eréndira Aragón Sánchez
4
Alejandro Palacios-Espinosa
4
*
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234028
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v40.n3.06
Crop production
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
State Technical University of Quevedo. Av. Quito. km 1 1/2
via Santo Domingo, Quevedo, Los Ríos, Ecuador.
2
Centro de Investigaciones Biológicas del Noroeste. National
Polytechnic Institute195,
Col. Playa Palo de Santa Rita, La
Paz, Baja California Sur, 23096, Mexico.
3
Technical University of Cotopaxi, La Maná Extension, Av.
Los Almendros and Pujilí, La Maná, Cotopaxi, Ecuador.
4
Autonomous University of Baja California Sur, La Paz,
Baja California Sur, Mexico.
Received: 11-04-2023
Accepted: 09-05-2023
Published: 26-0
7-2023
Abstract
Biostimulants improve the absorption and assimilation of nutrients by
plants, making them more tolerant to biotic or abiotic stress, improving
their agronomic characteristics. Natural and biodegradable biostimulants
such as chitosan have fungal and bactericidal activities and promote growth
and crop yield, this is why, to evaluate the eect of chitosan application on
growth and productive parameters of broccoli (Brassica oleracea L.), three
concentrations of chitosan (T
1
= 500 mg.L
-1
; T
2
= 1000 mg.L
-1
; and T
3
= 2000
mg.L
-1
) and a control treatment (T
4
= distilled water), were applied by foliar
spray when the true leaves unfolded, using a completely randomized design
with 30 repetitions per treatment. The variables height of the plant, number
of leaves per plant, diameter of the owering stalk, diameter of the owering
head, length of the owering stalk, total length of the owering stalk, fresh
biomass of the owering head, of the root, and of the aerial part, total dry
biomass and yield were measured. All the variables increased (P<0.05) as
the chitosan dose increased, concluding that the application of chitosan to
the broccoli crop is a viable alternative as a substitute for synthetic fertilizers.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234028. July-September. ISSN 2477-9407.2-6 |
Resumen
Los bioestimulantes mejoran la absorción y asimilación de
nutrientes de las plantas, haciendolas más tolerantes al estrés biótico o
abiótico, mejorando sus características agronómicas. Bioestimulantes
naturales y biodegradables como el quitosano tienen actividades
fúngicas, bactericidas y son promotores de crecimiento y rendimiento
de los cultivos, es por ello que con el objetivo de evaluar el efecto
de la aplicación de quitosano sobre parámetros de crecimiento y
productivos del brócoli (Brassica oleracea L.), tres concentraciones
de quitosano (T
1
= 500 mg.L
-1
; T
2
= 1000 mg.L
-1
y T
3
= 2000 mg.L
-1
) y
un tratamiento control (T
4
= agua destilada), fueron aplicados mediante
aspersión foliar al desplegarse las hojas verdaderas, utilizando un
diseño completamente al azar con 30 repeticiones por tratamiento. Se
midieron las variables altura de la planta, número de hojas por planta,
diámetro del tallo, diámetro de la pella, longitud del tallo del ramo,
longitud total del ramo, biomasa fresca de la pella, de la raíz y de la
parte aérea, biomasa seca total y rendimiento. Todas las variables se
incrementaron (P<0.05) a medida que la dosis de quitosano aumentó,
concluyéndose que la aplicación de quitosano al cultivo del brócoli
es una alternativa viable como sustituto de los fertilizantes sintéticos.
Palabras clave: bioestimulante, estrés abiótico, promotor de
desarrollo
Resumo
Os bioestimulantes melhoram a absorção e assimilação dos
nutrientes pelas plantas tornando-as mais tolerantes ao estresse
biótico ou abiótico, melhorando suas características agronômicas.
Bioestimulantes naturais e biodegradáveis, como a quitosana,
possuem atividades fúngica e bactericida e promovem o crescimento
e a produtividade das culturas, por isso com o objetivo de avaliar
o efeito da aplicação de quitosana nos parâmetros de crescimento
e produção de brócolis (Brassica oleracea L.), três concentraçðes
de quitosana (T
1
= 500 mg.L
-1
; T
2
=1000 mg.L
-1
e T
3
= 2000 mg.L
-1
) e
um tratamento controle (T
4
= agua destilada), foram aplicados por
pulverização foliar quando as folhas verdadeiras se abriram, em
delineamento inteiramente casualizado com 30 repetiçðes por
tratamento. As variáveis altura da planta, número de folhas por planta,
diâmetro do cuale, diâmetro do pellet, comprimento do caules do
buquê, comprimento total do buquê, biomassa fresca do pellet. Da raíz
e da parte aérea, parte biomassa seca total e productividade. Todas as
variáveis aumentaram (P<0.05) com o aumento da doce de quitosana,
concluindo que a aplicação de quitosana na cultura de brócolis é uma
alternativa viável em substituição aos fertilizantes sintéticos.
Palavras-chave: bioestimulante, estresse abiótico, promotor de
desenvolvimento
Introduction
Broccoli (Brassica oleracea L.) is a very perishable climacteric
vegetable, rich in minerals, vitamin C, dietary bers, nutritional
antioxidants, glucosinolates, and phenolic compounds (Bhandari
et al., 2019). The importance of its consumption has increased in
recent years because of its signicant amount of anticarcinogenic and
antioxidant compounds, as well as its multiple vitamins (El-Beltag et
al., 2022), therefore, the planting areas of this crop have grown, due
to the increase in demand in national and international markets. The
main destinations of this vegetable are Japan, the United States, and
the European Union (Duque and Murillo, 2021).
Broccoli responds signicantly to nitrogen fertilization (Lazcano
et al., 2006), however, the excessive use of fertilizers by farmers
increases production costs, deteriorating quality and denaturing
soil fertility (Borboa et al., 2016). In addition, the excessive use
of fertilizers in soils causes erosion and salinity, accumulation of
heavy metals, eutrophication of water, and accumulation of nitrates
(Rahman and Zhang, 2018), therefore, the search for ecological
solutions that increase the eciency of plant production and decrease
the use of synthetic chemicals has become essential (Stasińska-
Jakubas and Hawrylak-Nowak, 2022). In recent years, the use of
biostimulants has been an alternative to the application of synthetic
fertilizers (Nunez et al., 2023), since these, in addition to having
increased their costs, cause damage to human and animal health and
the environment (Torres-Rodriguez et al., 2021; Dupouy, 2023). A
biostimulant is an agrochemical product formulated with mixtures
of natural substances and/or microorganisms that applied to plants,
improve the eciency of mineral nutrition, tolerance to abiotic stress
(salinity, drought, high temperatures, heavy metals, among others),
and biotic and/or crop yield, or improve the quality characteristics
of crops (Rouphael and Colla, 2020; García-Sánchez et al., 2022). In
general, nine categories of substances that act as biostimulants have
been dened: (1) humic substances; (2) complex organic materials
(obtained from agro-industrial and urban waste, sludge extracts,
compost, and manure); (3) benecial chemical elements (Al, Co, Na,
Se, and Si); (4) inorganic salts (5) algae extracts (brown, red and green
macroalgae); (6) antiperspirants (kaolin and polyacrylamide); (7) free
amino acids and N-containing substances (peptides, polyamines and
betaines); and (8) plant growth-promoting rhizobacteria (PGPR),
arbuscular mycorrhizal fungi, and Trichoderma spp. (García-Sánchez
et al., 2022).
Some organic raw materials contain biostimulants or biostimulant
components of industrial waste, which are eective in agriculture.
These include vermicompost, sewage sludge, protein hydrolysate,
and chitin/chitosan derivatives, among others (Xu and Geelen, 2018).
Therefore, biostimulants could represent a sustainable measure
to foster the resilience of cropping systems (Antonucci et al., 2023).
Their positive eects are mainly due to bioactive compounds that
stimulate plant growth, such as phytohormones, amino acids, and
nutrients (Kisvarga et al., 2022). One of the biostimulants used to
increase growth, development, and yields in crops is chitosan, due to
its biocompatibility, biodegradability, and bioactivity (Reyes-Pérez et
al., 2020b; Torres-Rodriguez et al., 2021). Chitosan is a biopolymer
obtained from chitin, which is the second most common natural
polysaccharide after cellulose (Muthu et al., 2021). The positive
eects of chitosan on plants include improvements in physiological
mechanisms and growth, as well as an increase in the shelf life of fruits
and vegetables (Stasińska-Jakubas and Hawrylak-Nowak, 2022).
The application of chitosan improves the assimilation of nutrients
in plants (Kahromi and Khara, 2021), increases their growth and
development, stimulates seed germination, increases the fresh weight
of the roots and the plant, and increases yields in dierent crops
such as tomato (Solanum lycopersicum L.), cucumber (Cucumis
sativus L.), lettuce (Lactuca sativa L.), pepper (Capsicum annuum
L.), among others (Zohara et al., 2019; Reyes-Pérez et al., 2020b;
Reyes-Pérez et al., 2021a; Rouphael et al., 2022). In addition, it is
important to control plant pathogens that colonize plants, activating
defense responses such as increased callose deposition, production
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234028
3-6 |
of defense-related enzymes, phytoalexins, and PR proteins (Torres-
Rodriguez et al., 2021; Loron et al., 2023), as well as the increase
in chlorophyll content in plants (Holguin-Peña et al., 2020; Reyes-
Pérez et al., 2020c) and the decrease in water loss due to transpiration
(Morales et al., 2016). In view of the above, the objective of this work
was to evaluate the eect of the application of chitosan at dierent
concentrations, on the growth and productive parameters of broccoli
cultivation.
Materials and methods
The present study was carried out in the greenhouse of the
Experimental Campus “La María” located in the canton Mocache,
province of Los Ríos, at a south latitude of 1°04’48. 6” and west
longitude of 9°30’04.2”, altitude of 75 m above sea level, humid
tropic climate and average annual temperature of 25.3 °C, average
annual precipitation of 1587.5 mm; 86 % relative humidity and
994.4 sunshine hours per year. With a loam-loamy soil, pH of 5.5,
and a at topography (INAMHI, 2015). Broccoli seeds of the variety
Calabrese were sown continuously without spaces, manually on the
plot, subsequently covered with a small sheet of soil (1-1.5 cm) and
applying frequent irrigation (50 cm of sheet), as well as carrying out
control work of undesirable plants, to achieved plants of good vigor
at 35 d after sowing, with heights of 18-20 cm and 6-7 leaves. These
plants were transplanted to a plot of 50 m
2
divided into four subplots
with 30 plants in each, planted at a distance of 0.50 m between plants
and 0.60 m between rows. After the transplant, manual cultural work
was carried out such as weeding, and hilling. Light irrigation (50 cm
of sheet) was applied so that the crop had moisture throughout its
cycle, according to the water needs of the crop. At 15 and 25 days after
transplantation, an application (foliar) was made with 250 mL per plot
of the following chitosan treatments (Sigma-Aldrech: chitosan high
molecular weight / deacetylated chitin 75%, poly (D-glucosamine)):
T
1
= 500 mg.L
-1
; T
2
= 1000 mg.L
-1
and T
3
= 2000 mg.L
-1
), and a control
treatment (T
4
= distilled water), taking into account that the plants
were in the true leaves unfolding stage. Before closing the eld, two
manual cleanings were carried out. The plant size (cm) was measured,
from the base of the stalk below the rst internode to the top of the
plant head; Number of leaves; stalk diameter (cm); head diameter
(cm); length of the stalk measured from the beginning of the stalk cut
to the beginning of the stalk inorescence); total length of the stalk
(measured from the beginning of the cut of the stalk to the cup of the
ower head); fresh mass (g) of the head, root, and aerial part; total
dry biomass (a recirculating air stove was used ± 5 ºC, where they
were maintained for a period of 72 hours at 80 ºC temperature until
constant weight and then the dry mass was determined in an analytical
balance); yield (extrapolated to kg.ha
-1
). A descriptive analysis (mean
and standard error) of all variables was performed, subsequently, a
linear model and a trend analysis by regression were used to establish
the eect of the treatments on the behavior of the variables, using the
Minitab® statistical software.
Results and discussion
The descriptive statistics (mean and standard error) for each of
the variables in the four treatments are presented in Table 1, in which
it can be seen that the response to each variable was increasing as
the concentration of chitosan increased, it is also appreciated that
the greatest responses were presented in the concentration of 2000
mg.L
-1
. The diameter of the head and the fresh biomass of the stalk
were very similar to those reported by Puenayan et al. (2009), with
doses of 150 kg.ha
-1
N and 200 kg.ha
-1
P
2
O
5
in broccoli of the variety
Italica, and that reported by Borboa et al. (2016), for head diameter,
with three broccoli hybrids (Avenger, 15.05-15.91 cm; Marathon,
15.03-15.68 cm and Heritage, 14.99-15.32 cm) that received the
application of two halobacteria (Azospirillum halopraeferens and
Bacillus amiloliquefasciens) and a control, and higher than those
reported by Rivera (2022) who reports head diameter of 13.66 cm
and yield of 14.200 kg.ha
-1
for broccoli variety italica of the hybrid
Paraiso, with the application of Kimelgran: 470.63 kg.ha
-1
, and head
diameter of 12.81 cm and yield of 13.25 kg.ha
-1
with the application
of 200-120-60 of fertilizer. However, the yield obtained in our study
was lower (20.250 vs 33.440 kg.ha
-1
) than that reported by Puenayan
et al. (2009).
Table 1. Descriptive measures (mean and standard error) of the variables of broccoli variety Calabrese in response to the concentration
of chitosan.
Variables
0
500 1000 2000
Plant height (cm) (22.0 ± 0.58)
d
(26.6 ± 0.33)
c
(32.0 ± 0.58)
b
(39.3 ± 0.88)
a
Stalk diameter (cm) (1.6 ± 0.088)
d
(2.2± 0.057)
c
(2.7 ± 0.10)
b
(3.8 ± 0.03)
a
Stalk length (cm) (6.16 ± 0.17)
d
(7.16 ± 0.17)
c
(7.76 ± 0.03)
b
(8.80 ± 0.11)
a
Total length of stalk (cm) (14.3 ± 0.33)
d
(16.8 ± 0.17)
c
(18.3 ± 0.33)
b
(21.6 ± 0.33)
a
Number of leaves (14.3 ± 0.33)
d
(16.6 ± 0.33)
c
(20.0 ± 0.57)
b
(22.6 ± 0.33)
a
Head diameter (cm) (6.3 ± 0.17)
c
(8.0 ± 0.29)
c
(12.3 ± 0.33)
b
(15.0 ± 0.57)
a
Fresh root biomass (g) (84.7 ± 0.33)
d
(96.3 ± 0.88)
c
(174.3 ± 2.3)
b
(189.0 ± 2.08)
a
Fresh biomass aerial part (g) (835.0 ± 2.9)
d
(878.3 ± 6.01)
c
(1053.3 ± 4.4)
b
(1191.7 ± 7.3)
a
Fresh stalk biomass (g) (154.3 ± 2.3)
c
(173.3 ± 1.7)
c
(268.3 ± 4.4)
b
(400.0 ± 10.4)
a
Total dry matter (g) (127.7 ± 1.45)
d
(142.3 ± 1.45)
c
(150.0 ± 1.15)
b
(163.3 ± 1.67)
a
Yield (kg.ha
-1
) (6772.3 ± 37.5)
c
(7763.3 ± 47.8)
c
(12010 ± 77.7)
b
(20250 ± 608)
a
Rows with dierent literal indicate signicant dierences (P<0.05)
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234028. July-September. ISSN 2477-9407.4-6 |
The response of all variables was directly proportional to the
concentration of chitosan, in gure 1 it can be seen that the growth
variables; plant height, stalk length, stalk diameter and the number
of leaves, increased their response as the concentration of chitosan
increased. Increases in plant height in response to chitosan application
have been reported in tomatoes (Terry et al., 2017; Reyes-Pérez et al.,
2020a; Chanaluisa-Saltos et al., 2022), turnip (Álvarez et al., 2021),
rice (Molina et al., 2017) and broccoli but using a vegetable protein
hydrolysate as a biostimulant (Amirkhani et al., 2016).
Figure 1. Eect of chitosan concentration on the response of
growth variables in the broccoli plant var. Calabrese.
The biostimulant eect of chitosan on crop growth is related to
the increased availability and absorption of nutrients and the process
of photosynthesis through the accumulation of metabolites and the
increase of foliar pigments (Sharif et al., 2018). The number of leaves
in soybeans was also increased with chitosan applications at doses
of 10, 100, and 500 mg.L
-1
(Costales-Menendez et al., 2020), as well
as in tobacco crops (González et al., 2017), of beans with doses of
600 mg.ha
-1
of Quitomax® (Morales et al., 2016), and potato using
doses of 150 mg.ha
-1
of Quitomax® (Morales et al., 2015). The
increase in the number of leaves represents a greater leaf surface and
as a consequence a higher photosynthetic capacity and an increase in
dry matter and yield (Morales et al., 2016). An increase in the stem
diameter of tomato (Reyes-Pérez et al., 2020b; Pincay-Manzaba et
al., 2021) and tobacco (González et al., 2017) was reported in response
to the application of chitosan, which stimulates the proliferation of
spindle and radial initial cells, which is reected in an increase in
stem diameter (Pincay-Manzaba et al., 2021).
The morphological variables of fresh biomass of the root, of the
aerial part of the stalk, and the total dry matter (gure 2), as well as
the total length of the stalk and diameter of the head, also increased as
the concentration of chitosan increased (gure 3).
An increase in the fresh biomass of tomato fruit and root was
reported in response to the application of chitosan (Chanaluisa-Saltos
et al., 2022; Rivas-García et al., 2021). The diameter of the broccoli
head variety italica, also increased in response to chitosan (Yildirim
et al., 2011), in contrast, Kałużewicz et al. (2018) found no eect
on this variable in response to the application of an amino acid as a
biostimulant in broccoli of the variety Tiburon.
The yield increased as the concentration of chitosan increased
(gure 4). Yield increases in response to chitosan application were
reported in broccoli variety italica (Yildirim et al., 2011) and tomato
(Rivas-García et al., 2021; Chanaluisa-Saltos et al., 2022).
Figure 2. Eect of chitosan concentration on the response of
morphological variables in the broccoli plant var.
Calabrese.
Figure 3. Behavior of stalk length and head diameter in response
to chitosan concentration.
Figure 4. Yield of broccoli in response to chitosan concentration.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234028
5-6 |
Conclusions
The greatest response in all the variables studied was presented
when a concentration of 2000 mg chitosan was used, however, the
trend study showed that the response could be increased at even
higher concentrations. The application of chitosan to the cultivation
of broccoli variety Calabrese is an alternative to reduce the use of
synthetic fertilizers, since not only the responses to growth and
productive variables of this crop are increased, but also considering
that its application contributes to the control of phytopathogens
because it increments callose deposits, the production of enzymes
related to plant defense, phytoalexins, and PR proteins, which makes
its use a viable biostimulant alternative for use in this crop.
Literature cited
Álvarez, S. A. R., Castillo, A. E. M., Reyes, P. J. J., Batista, C. A. R., Monge,
F. F., M., Culcay, V. M. B., & Santana, A. W. H. (2021). Crecimiento,
producción y estado tosanitario de planta de nabo (Brassica napus L.) a
la aplicación de quitosano y bacterias promotoras del crecimiento vegetal.
Ciencia Latina, 5 (6), 11392-11406. https://doi.org/10.37811/cl_rcm.
v5i6.1174
Amirkhani, M., Netravali, A. N., Huang, W., & Taylor, A. G. (2016). Investigation
of soy protein–based biostimulant seed coating for broccoli seedling and
plant growth enhancement. HortScience, 51(9), 1121-1126. https://doi.
org/10.21273/HORTSCI10913-16
Antonucci, G., Impollonia, G., Croci, M., Potenza, E., Marcone, A., &
Amaducci, S. (2023). Evaluating biostimulants via high-throughput eld
phenotyping: Biophysical traits retrieval through PROSAIL inversion.
Smart Agricultural Technology, 3, 100067. https://doi.org/10.1016/j.
atech.2022.100067
Bhandari, S.R., Kwak, J.H., Jo, J.S. & Lee, J.G. (2019). Changes in phytochemical
content and antioxidant activity during inorescence development in
broccoli. Chilean Journal of agricultural research, 79(1), 36-47. http://
dx.doi.org/10.4067/S0718-58392019000100036
Borboa, F.J., Wong, C.F.J., Rodríguez, F.F., Hernández, M. L.G., Reyes, P.J.J. &
Rueda, P.E.O. (2016). Halobacterias promotoras del crecimiento vegetal
en Brassisca oleracea en el noroeste de México. Revista Mexicana de
Ciencias Agrícolas, 17, 3509-3519. https://cibnor.repositorioinstitucional.
mx/jspui/bitstream/1001/1181/1/PUB-ARTICULO-3418.PDF
Chanaluisa-Saltos, J. S., Sánchez, A. R. Á., Reyes-Pérez, J. J. & Lizarde, N. A.
(2022). Respuesta Agronómica y Fitosanitaria de plantas de Tomate
(Solanum lycopersicum L.) a la aplicación de Quitosano en condiciones
controladas. Revista Cientíca Agroecosistemas, 10(1), 139-145. https://
aes.ucf.edu.cu/index.php/aes/article/view/528/502
Costales-Menéndez, D., Falcón-Rodríguez, A. B. & Travieso-Hernández, L.
(2020). Efecto de la masa molecular de quitosanos en la germinación
y el crecimiento in vitro de soya. Cultivos Tropicales, 41(1), 1-10.
http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0258-
59362020000100005&lng=es&nrm=iso&tlng=es
Dupouy, E. (2023). Chapter 24-Trends in risk assessment of chemical contaminants
in food. En M. E. Knowles, L. E. Anelich, A. R. Boobis, & B. Popping
(Eds.), Present Knowledge in Food Safety (pp. 320-328). Academic Press.
https://doi.org/10.1016/B978-0-12-819470-6.00046-9
Duque, P. I. V. and Murillo, A. Á. (2021). Análisis de los canales de comercialización
del brócoli en Ecuador. Revista Tecnológica-ESPOL, 33(3), 181-201.
https://doi.org/10.37815/rte.v33n3.857
El-Beltagi, H. S., Ali, M. R., Ramadan, K. M. A., Anwar, R., Shalaby, T. A., Rezk,
A. A., El-Ganainy, S. M., Mahmoud, S. F., Alkafafy, M. & El-Mogy, M.
M. (2022). Exogenous postharvest application of calcium chloride and
salicylic acid to maintain the quality of broccoli orets. Plants, 11(11),
1513. https://doi.org/10.3390/plants11111513
García-Sánchez, F., Simón-Grao, S., Navarro-Pérez, V. & Alfosea-Simón,
M. (2022). Scientic advances in biostimulation reported in the 5th
biostimulant world congress. Horticulturae, 8(7), 665. https://doi.
org/10.3390/horticulturae8070665
González Gómez, L. G., Jiménez Arteaga, M. C., Vaquero Cruz, L., Paz Martínez,
I., Falcón Rodríguez, A. & Araujo Aguilera, L. (2017). Evaluación de la
aplicación de quitosana sobre plántulas de tabaco (Nicotiana tabacum
L.). Centro Agrícola, 44(1), 34-40. http://scielo.sld.cu/pdf/cag/v44n1/
cag05117.pdf.
Holguin-Peña, R. J., Vargas-López, J. M., López-Ahumada, G. A., Rodríguez-
Félix, F., Borbón-Morales, C. G. & Rueda-Puente, E. O. (2020). Efecto
de quitosano y consorcio simbiótico benéco en el rendimiento de sorgo
en la zona indígena “Mayos” en Sonora. Terra Latinoamericana, 38(3),
705-714. https://doi.org/10.28940/terra.v38i2.669
INAMHI. 2015. Anuario meteorológico. Instituto nacional de Meteorología
Hidrológica, Ecuador. https://www.inamhi.gob.ec/docum_institucion/
anuarios/meteorologicos/Am%202012.pdf
Kahromi, S. and Khara, J. (2021). Chitosan stimulates secondary metabolite
production and nutrient uptake in medicinal plant Dracocephalum
kotschyi. Journal of the Science of Food and Agriculture, 101(9), 3898-
3907. https://doi.org/10.1002/jsfa.11030
Kałużewicz, A., Spiżewski, T., Krzesiński, W. & Zaworska, A. (2018). The eect
of biostimulants on the yield and quality of broccoli heads during storage.
Nauka Przyroda Technologie, 12(1), 1-4. https://doi.org/10.17306/J.
NPT.2018.1.4
Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A. & Orlóci, L. (2022).
Eects of biostimulants in horticulture, with emphasis on ornamental
plant production. Agronomy, 12(5), 1043. https://doi.org/10.3390/
agronomy12051043
Lazcano, F., Carrillo, G., Vidal, M., Etchevers, B. y Nuñez, E. (2006). Nutrición
potásica del broccoli (Brassisca oleracea) con manejo convencional y
fertirrigación en un vertisol en invernadero. Agrociencia, 1 (40): 1-11.
https://www.scielo.org.mx/pdf/agro/v40n1/1405-3195-agro-40-01-1.pdf
Loron, A., Wang, Y., Atanasova, V., Richard-Forget, F., Gardrat, C. & Coma,
V. (2023). Chitosan for eco-friendly control of mycotoxinogenic
Fusarium graminearum. Food Hydrocolloids, 134, 108067. https://doi.
org/10.1016/j.foodhyd.2022.108067
Molina, Z. J. A., Colina, R. M., Rincón, D. & Vargas, C. J. A. (2017). Efecto del
uso del quitosano en el mejoramiento del cultivo del arroz (Oryza sativa
L. variedad sd20a). Revista de Investigación Agraria y Ambiental, 8(2),
151-165. https://doi.org/10.22490/21456453.2041
Morales Guevara, D., Dell Amico Rodríguez, J., Jerez Mompié, E., Hernández, Y.
D. & Martín Martín, R. (2016). Efecto del QuitoMax® en el crecimiento
y rendimiento del frijol (Phaseolus vulgaris L.). Cultivos Tropicales,
37(1), 142-147. http://scielo.sld.cu/pdf/ctr/v37n1/ctr20116.pdf
Morales Guevara, D., Torres Hernández, L., Jerez Mompié, E., Falcón Rodríguez,
A. & Amico Rodríguez, J. D. (2015). Efecto del Quitomax en el
crecimiento y rendimiento del cultivo de la papa (Solanum tuberosum L.).
Cultivos Tropicales, 36(3), 133-143. http://scielo.sld.cu/pdf/ctr/v37n1/
ctr20116.pdf
Muthu, M., Gopal, J., Chun, S., Devadoss, A. J. P., Hasan, N. & Sivanesan, I.
(2021). Crustacean Waste-Derived Chitosan: Antioxidant Properties and
Future Perspective. Antioxidants, 10(2), Art. 2. https://doi.org/10.3390/
antiox10020228
Nunez, G. H., Buzzi, G. & Heller, C. R. (2023). Southern highbush blueberry
responses to humic acid application in soilless substrates. Scientia
Horticulturae, 308, 111541. https://doi.org/10.1016/j.scienta.2022.111541
Pincay-Manzaba, D. F., Cedeño-Loor, J. C. & Espinosa Cunuhay, K. A. (2021).
Efecto del quitosano sobre el crecimiento y la productividad de Solanum
lycopersicum. Centro Agrícola, 48(3), 25-31. http://scielo.sld.cu/pdf/cag/
v48n3/0253-5785-cag-48-03-25.pdf
Puenayan, I. A., Cordoba, R.F. & Unigarro, S.A. (2010). Respuesta del brócoli
Brassica oleracea var. Itálica L. híbrido Legacy a la fertilización con
N-P-K en el municipio de Pasto, Nariño. Revista de Agronomía 27(1), 49-
57. https://revistas.udenar.edu.co/index.php/rfacia/article/view/82
Rahman, K. M. A. & Zhang, D. (2018). Eects of fertilizer broadcasting on the
excessive use of inorganic fertilizers and environmental sustainability.
Sustainability, 10(3), 759. https://doi.org/10.3390/su10030759
Reyes-Pérez, J. J., Enríquez-Acosta, E. A., Ramírez-Arrebato, M. Á., Rodríguez-
Pedroso, A. T. & Falcón-Rodríguez, A. (2020a). Efecto de ácidos
húmicos, micorrizas y quitosano en indicadores del crecimiento de dos
cultivares de tomate (Solanum lycopersicum L.). Terra Latinoamericana,
38(3), 653-666. https://doi.org/10.28940/terra.v38i3.671
Reyes-Pérez, J. J., Enríquez-Acosta, E. A., Ramírez-Arrebato, M. Á., Zúñiga
Valenzuela, E., Lara-Capistrán, L. & Hernández-Montiel, L. G. (2020b).
Efecto del quitosano sobre variables del crecimiento, rendimiento y
contenido nutricional del tomate. Revista mexicana de ciencias agrícolas,
11(3), 457-465. https://doi.org/10.29312/remexca.v11i3.2392
Reyes-Pérez, J. J., Rivero-Herrada, M., Andagoya Fajardo, C. J., Beltrán-Morales,
F. A., Hernández-Montiel, L. G., García Liscano, A. E. & Ruiz-Espinoza,
F. H. (2021a). Emergencia y características agronómicas del Cucumis
sativus a la aplicación de quitosano, Glomus cubense y ácidos húmicos.
Biotecnia, 23(3), 38-44. https://doi.org/10.18633/biotecnia.v23i3.1427
Reyes-Pérez, J. J., Rivero-Herrada, M., García-Bustamante, E. L., Beltran-
Morales, F. A. & Ruiz-Espinoza, F. H. (2020c). Aplicación de quitosano
incrementa la emergencia, crecimiento y rendimiento del cutivo de tomate
(Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia,
22(3), 156-163. https://doi.org/10.18633/biotecnia.v22i3.1338
Rivas-García, T., González-Gómez, L. G., Boicet-Fabré, T., Jiménez-Arteaga,
M. C., Falcón-Rodríguez, A. B. & Terrero-Soler, J. C. (2021). Respuesta
agronómica de dos variedades de tomate (Solanum lycopersicum L.) a la
aplicación del bioestimulante con quitosano. Terra Latinoamericana, 39,
e796. https://doi.org/10.28940/terra.v39i0.796
Rivera, C.L.M. (2022). Efecto del abonamiento en el carbono orgánico del
suelo y rendimiento del brócoli (Brassisca oleracea var. Italica) bajo
riego tecnicado. Revista Investigación Agraria. 4(3), 6-17. https://doi.
org/10.47840/ReInA.4.3.1502
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234028
6-6 |
Rouphael, Y. and Colla, G. (2020). Editorial: Biostimulants in Agriculture.
Frontiers in Plant Science, 11, 1-7. https://www.frontiersin.org/
articles/10.3389/fpls.2020.00040
Rouphael, Y., Carillo, P., Garcia-Perez, P., Cardarelli, M., Senizza, B., Miras-
Moreno, B., Colla, G. & Lucini, L. (2022). Plant biostimulants from
seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse
lettuce by modulating plant metabolism in a distinctive manner. Scientia
Horticulturae, 305, 111368. https://doi.org/10.1016/j.scienta.2022.111368
Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T.,
Tianchan, D. & Wang, X. (2018). The multifunctional role of chitosan
in horticultural crops; A Review. Molecules, 23(4), 872. https://doi.
org/10.3390/molecules23040872
Stasińska-Jakubas, M. and Hawrylak-Nowak, B. (2022). Protective, biostimulating,
and eliciting eects of chitosan and its derivatives on crop plants.
Molecules, 27(9), 2801. https://doi.org/10.3390/molecules27092801
Terry Alfonso, E., Falcón Rodríguez, A., Ruiz Padrón, J., Carrillo Sosa, Y. &
Morales Morales, H. (2017). Respuesta agronómica del cultivo de tomate
al bioproducto QuitoMax
®
. Cultivos Tropicales, 38(1), 147-154. http://
www.redalyc.org/articulo.oa?id=193250540019
Torres-Rodriguez, J. A., Reyes-Pérez, J. J., Castellanos, T., Angulo, C., Quiñones-
Aguilar, E. E. & Hernandez-Montiel, L. G. (2021). A biopolymer
with antimicrobial properties and plant resistance inducer against
phytopathogens: Chitosan. Notulae Botanicae Horti Agrobotanici Cluj-
Napoca, 49(1), 12231. https://doi.org/10.15835/nbha49112231
Xu, L. and Geelen, D. (2018). Developing Biostimulants From Agro-Food and
Industrial By-Products. Frontiers in Plant Science, 9, 1567. https://www.
frontiersin.org/articles/10.3389/fpls.2018.01567
Yildirim, E., Karlidag, H., Turan, M., Dursun, A. & Goktepe, F. (2011). Growth,
nutrient uptake, and yield promotion of broccoli by plant growth
promoting rhizobacteria with manure. HortScience, 46(6), 932-936.
https://doi.org/10.21273/HORTSCI.46.6.932
Zohara, F., Surovy, M. Z., Khatun, A., Prince, F. R. K., Ankada, A. M., Rahman, M.
& Islam, T. (2019). Chitosan biostimulant controls infection of cucumber
by Phytophthora capsici through suppression of asexual reproduction
of the pathogen. Acta Agrobotanica, 72(1), 1-8. https://doi.org/10.5586/
aa.1763