© The Authors, 2023, Published by the Universidad del Zulia*Corresponding author: francisco.guevara@unach.mx
Keywords:
Microbial consortia
Physicochemical components
Zea mays L.
Yield
Eect of microbial consortia on maize yield in Chiapas, Mexico
Efecto de consorcios microbianos en el rendimiento de maíz en Chiapas, México
Efeito de consórcios microbianos na produção de milho em Chiapas, México
Lissy Rosabal Ayan
1
Francisco Guevara Hernández
1*
Víctor M. Ruiz Valdiviezo
2
Manuel A. La O Arias
1
Deb Raj Aryal
1
Mariela B. Reyes Sosa
1
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234026
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v40.n3.04
Crop Production
Associate editor: Professor Andreína García de González
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Universidad Autónoma de Chiapas. Facultad de Ciencias
Agronómicas. Carretera Ocozocoautla. Villaores Km. 84.5
C.P. 30470. Villaores, Chiapas, México.
2
Tecnológico Nacional de México / Instituto Tecnológico de
Tuxtla Gutiérrez. Carretera Panamericana km. 1080. C.P.
29050. Tuxtla Gutiérrez, México.
Received: 02-05-2023
Accepted: 25-06-2023
Published: 26-07-2023
Abstract
The use of microbial consortia as biofertilizers allows improving
crop productivity and the quality of agricultural soils, by incorporating
microorganisms that facilitate the availability of nutrients for plants and
change the soil physicochemical conditions. In order to evaluate the eect of
microbial
consortia on maize yield, inoculums from dierent environments
were used in the maize crop of Villa Corzo and Villaores municipalities,
Chiapas. Six treatments with different consortia were defined: three from
agricultural plots and three from mountains “La Frailescana”,Cerro
Nambiyugua” and Biosphere Reserve “La Sepultura”-, and one control,
under a randomized block experimental design with four replications. The
application of the microbial consortia was made directly to the soil at 20, 40
and 60 days after sowing of the crop. The eect of the consortia on maize yield
was determined using a design with nested eects in which the eects of the
origin of the microbial consortia were controlled, and the nested treatments in
the environments. The association between the physicochemical components
of the consortia and the culture yield was evaluated using Pearson’s
correlation (p 0.05). Only the mountain consortiums from “La Sepultura”
were the ones that showed maize yield increase. However, both the mountain
and plot consortiums have the potential to be used as biofertilizers in maize
cultivation, when combined with another source of organic fertilization, such
as poultry manure.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234026. July-September. ISSN 2477-9407.
2-7 |
Resumen
El uso de consorcios microbianos como biofertilizantes
permite mejorar la productividad de los cultivos y la calidad de
los suelos agrícolas, al incorporar microorganismos que facilitan
la disponibilidad de nutrientes para las plantas y cambian las
condiciones sicoquímicas edácas. Con el objetivo de evaluar el
efecto de consorcios microbianos sobre el rendimiento del maíz, se
utilizaron inóculos de diferentes ambientes en el cultivo de maíz de
los municipios Villa Corzo y Villaores, Chiapas. Se denieron seis
tratamientos con diferentes consorcios; tres de parcelas agrícolas y
tres de montaña “La Frailescana”, Cerro Nambiyugua” y Reserva
de la Biosfera “La Sepultura”, y un control, bajo un diseño
experimental de bloques al azar con cuatro réplicas. La aplicación de
los consorcios microbianos se realizó directamente al suelo a los 20,
40
y 60 días después de siembra del cultivo. Se determinó el efecto
de los consorcios en el rendimiento de maíz mediante un diseño con
efectos anidados en el que se controlaron los efectos del origen de los
consorcios microbianos, y los tratamientos anidados en los ambientes.
Se evaluó la asociación entre los componentes sicoquímicos de los
consorcios y el rendimiento del cultivo mediante la correlación de
Pearson (p 0,05). Sólo los consorcios de montaña provenientes de
“La Sepultura”, fueron los que mostraron aumento en el rendimiento
de maíz. No obstante, tanto los consorcios de montaña como los de
parcela, presentan potencial para ser utilizados como biofertilizantes
en el cultivo de maíz cuando son combinados con otra fuente de
fertilización orgánica, como la pollinaza.
Palabras clave: consorcios microbianos, componentes
sicoquímicos, Zea mays L., rendimiento.
Resumo
A utilização de consórcios microbianos como biofertilizantes
permite melhorar a produtividade das culturas e a qualidade dos
solos agrícolas, por meio da incorporação de microrganismos que
facilitam a disponibilidade de nutrientes para as plantas e alteram as
condições sicoquímicas do solo. Para avaliar o efeito dos consórcios
microbianos na produção de milho, foram utilizados inóculos de
diferentes ambientes na cultura do milho dos municípios de Villa
Corzo e Villaflores, Chiapas. Seis tratamentos com diferentes
consórcios foram definidos; três de parcelas agrícolas e três de
montanha “La Frailescana”, Cerro Nambiyugua” e Reserva da
Biosfera “La Sepultura”, e uma testemunha, em delineamento
experimental em blocos casualizados com quatro repetições. A
aplicação dos consórcios microbianos foi feita diretamente no solo
aos 20, 40 e 60 dias após a sementeira da lavoura. O efeito dos
consórcios sobre a produtividade do milho foi determinado por meio
de um delineamento com efeitos aninhados em que foram controlados
os efeitos da origem dos consórcios microbianos e os tratamentos
aninhados nos ambientes. A associação entre os componentes
sicoquímicos dos consórcios e o rendimento da cultura foi avaliada
pela correlação de Pearson (p 0,05). Somente os consórcios de
montanha de “La Sepultura” foram os que melhoraram o rendimento
do milho. No entanto, tanto o consórcio de montanha quanto o de
talhão têm potencial para serem utilizados como biofertilizantes na
cultura do milho, quando combinados com outra fonte de adubação
orgânica, como a cama de frango.
Palavras-chave: consórcios microbianos, componentes
sicoquímicos, Zea mays L., rendimento.
Introduction
Maize (Zea mays L.) is the most important staple crop for human
and animal consumption in Mexico, particularly in the Frailesca
region in Chiapas. In 2020, the municipalities of Villa Corzo and
Villaores contributed more than 14,600 tons of the grain, which
represented more than 40 % of the region’s production (Servicio de
Información Agroalimentaria y Pesquera Estados Unidos Mexicanos
[SIAP], 2020), but since 2001 there has been a downward trend in
the average annual planting area and yield, due to the indiscriminate
use of agrochemicals. The prolonged use of synthetic fertilizers and
pesticides aects soil microbial communities, causing an imbalance of
nutrients and the functional and structural properties of the soil. This
is reected in weak crops, demanding higher amounts of synthetic
products in successive crop cycles (Tripathi et al., 2020).
In 2020, in the Frailesca region, 31 % of what was sown in 2001
was sown (Guevara et al., 2021) due to a decrease in the productivity
of agricultural soils (López et al., 2018). As a consequence, soils with
generalized acidity and practically no organic matter are found in the
region (Martínez-Aguilar et al., 2020). Given this situation, the search
for alternatives or complements to chemical fertilization is required,
which in turn allow the use of more sustainable agricultural practices.
The use of microbial consortia represents an alternative to
solve these fertility problems. These comprise a diversity of
microorganisms, which intervene in the functioning of any ecosystem,
since they facilitate the ecient use of water and soil nutrients by
plants and allow some positive eects in dierent agricultural uses
(Rosabal-Ayan et al., 2021). Several studies have shown that the use
of consortia improves the morphological, physiological and yield
characteristics of dierent crops (Shaheen et al., 2017; Ayvar et al.,
2020), and improve the physicochemical structure of soils (Martínez-
Aguilar et al., 2020).
The benets obtained with consortia rather than by the use of
individual microorganisms are evidenced by their taxonomic and
functional diversity, as multiple relationships between them are
obtained (Castro et al., 2015). Various factors, such as edaphic and
vegetation conditions, inuence this diversity. Consortia are formed
by microorganisms adapted to the conditions where they developed;
this is manifested by variations in their metabolism or even in their
genome (Tripathi et al., 2020).
In this context, the use of microbial consortia in staple crops
such as corn allows improving soil biology and fertility, as well as
the availability of essential elements for plants (Castro and González,
2021). In addition, they allow maintaining production, sustaining
productivity over time and saving on the purchase of production
inputs. The objective of this study was to evaluate the eect of
microbial consortia from dierent environments as biofertilizers on
maize yield in Chiapas, Mexico.
Materials and Methods
Characteristics of the study area
The study was conducted in Villa Corzo and Villaores; two of
the six municipalities of the Frailesca region. This region is located
between the Sierra del Sur and the Central Depression of Chiapas,
where semi-warm humid -A(C)(w2)- and warm sub-humid -AW2-
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rosabal et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234026
3-7 |
climates predominate, with rainfall between 1,200 and 2,500 mm in
summer. The vegetation found is composed of mountain mesophyll
forest, pine and oak forest and agricultural areas (Comité Estatal de
Información Estadística y Geografía [CEIEG], 2020), where lithosols,
regosols, acrisols and luvisols soils predominate (López et al., 2018).
The three experimental plots were located, one in Villa Corzo,
km 7.7 of the Villa Corzo-Villaores road (16°21’43.12” LN and
93°15’51.36” LO, 567 m.a.s.l.) and two in Villaores, locality Dr.
Domingo Chanona (16°20’18.4’ LN and 93°26’48.4’’LO, 724
m.a.s.l.), whose soil characteristics are presented in table 1.
Soil analyses were interpreted according to the Mexican Ocial
Standard NOM-021-RECNAT-2000 (Secretaría de Medio Ambiente
y Recursos Naturales, 2002).
Table 1. Physicochemical characteristics of the soil in the three study plots, before establishing the experiments.
Plot 1 Plot 2 Plot 3
Deter. Units Ind. Criteria Ind. Criteria Ind. Criteria
pH 1:2 agua 5.81
MA
5.51
MA
5.92
MA
MO % 1.20
Low
2.72
Medium
1.16
Low
P-Bray ppm 71.80
High
52.70
High
25.3
Medium
K
+
ppm 58.50
Very Low
86.70
Low
47.2
Very Low
Ca
2+
ppm 432
Medium
527
Medium
1109
High
Mg
2+
ppm 64.30
Low
75.10
Low
182.00
High
Na
+
ppm 33.40
Medium
16.90
Low
18.50
Low
Fe
3+
ppm 60.20
Adequate
48.70
Adequate
47.00
Adequate
Zn
2+
ppm 0.39
Poor
0.23
Poor
0.15
Poor
Mn
2+
ppm 25.30
Adequate
21.10
Adequate
18.10
Adequate
Cu
2+
ppm 0.29
Adequate
0.29
Adequate
0.32
Adequate
B ppm 0.10
Very Low
0.10
Very Low
0.11
Very Low
Al
3+
ppm 103.00
Medium
36.90
MB
36.7
MB
S ppm 2.93
Very Low
1.46
Very Low
1.46
Very low
N-NO
3
ppm 9.05
Very low
14.70
Low
6.53
Very low
Da g.cm
-3
1.26
No problem
1.44
No problem
1.32
No problem
EC dS.m
-1
0.14
Very low
0.18
Very low
0.09
Very low
CEC cmol+kg
-1
4.62
Very low
4.09
Very low
7.73
Low
Texture Loamy sand Loamy sand Loamy sand
Plot 1: plot with chemical fertilization+poultry manure; Plot 2: plot with chemical fertilization; Plot 3: plot with chemical fertilization+foliar fertilization; Deter:
determinations; Ind. indicators; OM: organic matter; Da: bulk density; EC: electrical conductivity; CEC: cation exchange capacity; MA: moderately acid; MB: moderately
low. Results from the Fertilab® laboratory, Celaya, Guanajuato, Mexico.
Experimental design and analysis
The experiment was established in the spring-summer (PV) cycle
of 2021, with Pioneer® P4082w hybrid corn and consisted of seven
treatments (table 2) under a randomized block experimental design
(subplots) with four replications.
To evaluate the eect of microbial consortia on corn yield, a nested
eects design was used in which the eects of the origin of the microbial
consortia (table 2), and the eect of the treatments (table 2) and the
treatments nested in the environments, with 21 levels, were controlled.
For comparison of yield means, Tukey’s test (p 0.05) and
Pearson’s correlation (p 0.05) were used to analyze the association
between physicochemical components of microbial consortia and corn
yield. Minitab statistical software (Minitab® LLC, 2021) was used for
statistical analysis.
Table 2. Treatments of microbial consortia collected from dierent
environments.
Environments Source Treatment
None Control T0
Plot Microbial
Consortia (MP)
Plot with chemical + foliar fertilization T1
Plot with chemical fertilization T2
Plot with chemical fertilization +
poultry manure
T3
Microbial Mountain
Consortia (MM)
Cerro Nambiyugua T4
La Frailescana T5
La Sepultura T6
Crop management
The experimental areas received the conventional agronomic
management carried out by the producer to the rest of the plot (table
3). Four applications of chemical fertilizers were made to the soil, and
only one application of organic matter.
Table 3. Agronomic management of the plots where the
experimental areas were established.
Plot
Planting area
(ha)
Sowing density
(plants.ha
-1
)
Fertilizer source (kg.ha
-1
)
1 2 60,000
600 kg urea+240 kg poultry
manure
2 7 60,000 900 kg urea
3 1 53,000
80 kg urea+1 L foliar
(Bayfolan®)
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(3): e234026. July-September. ISSN 2477-9407.
4-7 |
Preparation of microbial consortia
The leaf litter sample was collected from 0-10 cm depth and soil
from 5-20 cm depth, for a total of 25 kg of composite sample, per study
area (Suchini, 2012). Sampling was conducted during the months of
January to April 2021, in three plots of producers who grow corn
conventionally (Plot with chemical fertilization+poultry manure; Plot
with chemical fertilization; Plot of Villa Corzo) and three sites of
natural protected areas (Protected Area “La Frailescana”; Biosphere
Reserve “La Sepultura” and Cerro Nambiyugua).
The consortia were reproduced in solid state and activated in liquid
state, both processes under anaerobic conditions for 30 days (Suchini,
2012). Both processes were carried out in an artisanal manner at
room temperature, in 19 L containers. For reproduction (solid), 25
kg of leaf litter, 23 kg of corn our, 2 kg of molasses and 0.5 L of
water were used per container. For activation, 800 g of the solid, 200
g of molasses and 18 L of water were used. The physicochemical
characteristics presented in the liquid microbial consortia are shown
in table 4.
Table 4. Physicochemical characteristics of the liquid microbial
consortia.
Microbial consortia
Determination
Units T1 T2 T3 T4 T5 T6
pH 4.40 4.18 4.44 4.30 5.09 4.18
EC dS.m
-1
2.80 2.70 3.00 3.00 2.80 3.50
Nitrogen % 0.08 0.07 0.07 0.09 0.06 0.12
Phosphorus % 0.0015 0.0015 0.0017 0.0016 0.0011 0.003
Potassium % 0.05 0.04 0.04 0.04 0.04 0.07
Calcium % 0.02 0.01 0.02 0.02 0.03 0.03
Magnesium % 0.01 0.01 0.01 0.01 0.01 0.01
Sodium % 0.005 0.004 0.005 0.004 0.005 0.004
Sulfur % 0.02 0.01 0.02 0.02 0.006 0.03
Iron ppm 87.80 74.90 116.00 110.00 13.60 11.60
Copper ppm 0.002 0.004 0.001 0.003 0.003 0.002
Manganese ppm 5.97 6.02 7.15 6.94 11.1 5.42
Zinc ppm 2.99 2.86 3.20 3.00 2.74 3.17
Boron ppm 0.32 0.15 0.17 0.20 0.19 0.22
Moisture % 99.50 99.30 99.40 99.10 99.50 99.40
OM % 0.31 0.60 0.40
0.75 0.38 0.40
Ash % 0.17 0.15 0.23 0.15 0.16 0.24
OC % 0.18 0.35 0.23 0.44 0.22 0.23
C/N ratio 2.23 4.69 3.21 4.69 3.82 1.94
T: treatment; C: carbon; EC: electrical conductivity; OM: organic matter; OC:
organic carbon. Results from the Fertilab® laboratory, Celaya, Guanajuato,
Mexico.
The consortia were applied directly to the soil at the foot of the
plant at 20, 40 and 60 days after planting (DDS), at a rate of 10 mL
per plant.
Variables evaluated
For the evaluation of grain yield, 12 ears per experimental
unit were randomly selected and the total grain mass per ear was
determined at 12 % moisture (Centro Internacional de Mejoramiento
de Maíz y Trigo [CIMMYT], 2012).
Results and discussion
The results showed that the eect of microbial consortia on
maize yield may be inuenced by the environmental characteristics
of the inoculum origin, because the response was dierent in each
experimental plot (table 5).
Table 5. Eect of microbial consortia on corn yield in each of the
three plots.
Yield (t.ha
-1
) / Environment
(plot)
N EE CV Signicance
Treatments 1 2 3
T0 9.50
b
9.23
bc
8.36
cde
48 0.18 14% p<0.001
T1 10.67
a
9.42
b
7.01
f
T2 10.89
a
9.18
b
7.02
f
T3 10.59
a
8.96
bcd
7.54
f
T4 10.84
a
8.99
bcd
7.26
f
T5 10.85
a
9.18
b
7.07
f
T6 11.05
a
8.34
de
7.71
ef
Environments-Plot 1: plot with chemical fertilization+poultry manure; Plot 2:
plot with chemical fertilization; Plot 3: plot with chemical fertilization+poultry
manure. T0: Control without microbial consortia; plot microorganisms
(MP) T1: Plot with chemical + foliar fertilization, T2: with chemical
fertilization, T3: chemical fertilization + poultry manure; mountain
microorganisms: T4: Cerro Nambiyugua, T5: La Frailescana, T6: La Sepultura.
N: sample size; SE: standard error; CV: coefficient of variation. Means that do
not share a letter are significantly different when applying Tukey’s test with 95%
confidence.
The nested effects model showed that the highest yield of the three
environments was obtained in T6 of plot 1 (La Sepultura consortia
in the plot with chemical fertilization+poultry manure). These
results could be related to the mountain environmental
conditions that characterize the area of La Sepultura and, above all,
to a low anthropic influence, which allows the accumulation of
organic material (leaf litter), which in turn favors the creation of
environmental conditions of a physical, chemical and biological
nature that facilitate the stable development of microbial
populations.
Castro and González (2021) report that the quality of the inoculum
determines the quality of the biofertilizer, being the forests near
the agricultural production sites the best source of collection, since
they present microorganisms adapted to the area. However, it is
noteworthy that the treatments of consortia from the agricultural
plots presented a corn yield similar to those obtained with the
mountain consortia treatments (table 5); which could suggest the
previous adaptation of the microorganisms to these conditions. That
is, the consortia obtained from plots are able to establish and
increase their populations in the rhizosphere, manifest their
potential as biostimulants in the maize crop, and act as promoters
of new beneficial microbial populations.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rosabal et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234026
5-7 |
This result could contribute with an important antecedent to the
study and use of microbial consortia as biofertilizers, due to the fact
that several reports recommend obtaining them from mountains and
places with little anthropogenic activity (Castro et al., 2015). Other
research defends the hypothesis that in soils subjected to some type
of stress, there are microorganisms with tolerance characteristics that
can be isolated and used due to their high level of adaptation to these
conditions (Namasivayam, 2010; Shaheen et al., 2017).
However, the agricultural scenarios of the Frailesca region
subjected to constant natural and human weathering processes cause
abrupt changes in soils, which slows this adaptation process and aects
microbial populations (Alarcón-Camacho et al., 2019). This element
strengthens the idea of using microorganisms from the mountains,
because they enhance microbiological processes and improve the
health of productive agroecosystems (Castro and González, 2021).
Regarding the analysis by environments (table 4), in plot 1, where
poultry manure is used as fertilizer, the highest grain yields were
obtained, regardless of the origin of the consortia. All treatments were
statistically superior (P<0.05) to the control, from 1.09 t.ha
-1
(T3) to
1.54 t.ha
-1
(T6); there were no dierences (P<0.05) between plots
2 and 3 with respect to the control. Córdova-Bautista et al. (2009)
presented similar results when using poultry manure as a substrate
for the development of consortia, since it constitutes a reserve of
organic carbon and contains N, P and K
+
. In this way, the consortia
act eciently on plant nutrition, soil chemical properties and, in
turn, increase the dynamics of benecial microorganisms (Ramírez-
Gerardo et al., 2021).
Shaheen et al. (2017), evaluated the co-application of dierent
organic manures and chemical fertilizers with and without ecient
microorganisms (EM) on spinach growth, and observed an increase of
micro and macronutrients such as Zn
2+
, Fe
3+
and Cu
2+
, K
+
and N, when
they applied EM+poultry manure (5 t.ha
-1
), compared to treatments
without microorganisms and the controls. This treatment even
exceeded total N levels with respect to ME+chemical fertilization
(NPK; 100:40:56 kg.ha
-1
).
The analysis of the relationship between chemical properties of
the consortia and yield showed a positive and signicant correlation
(P<0.05) in plot 1 and highly signicant in plot 3 with the variables
EC, N, P and K
+
(table 6).
For corn cultivation, it has been determined that the adequate EC
range is 1.5 to 2.5 dS.m
-1
in soils (Fertilab, 2015), and it decreases
when the EC of the substrate exceeds 3.7 dS.m
-1
(Homan et al.,
1983). The results obtained in this research show that soil EC in plots
1, 2 and 3 is low (table 1), which is evidence that there are no salinity
problems.
The microbial consortia experienced a slight increase in EC,
which varied between 2.7 and 3.5 dS.m
-1
(table 6), values considered
acceptable for these microbial populations (Gamboa et al., 2020),
which in turn did not contribute to an increase in salts in the soil
or damage to the plants, due to the low doses and application
frequencies used. These results match with those obtained by Millán
et al. (2018), who assert that the EC in aqueous organic fertilizers is
generally higher than in solids. Likewise, they suggest that substrates
with an EC between 4 and 12dS.m
-1
can be incorporated directly into
the soil, since they improve its conditions and create suitable niches
for microorganisms and their development.
A negative correlation was obtained in plot 2 (table 6). In this plot,
a higher amount of fertilization (urea, 900 kg.ha
-1
) was applied (table
2). The producer exceeded (270 %) the urea dose recommended by
Fertilab
®
throughout the crop cycle. However, in plot 1, the producer
exceeded the amount of urea to be used by 35 %, while in plot 3 only
52 % of the recommended dose was used. Zhang et al. (2021), pointed
out that chemical fertilization (125 % N), in the short term, drastically
inuenced the diversity and stability of the edaphic microbiota, when
compared to another plot in which organic fertilization (100 % N)
was used.
Zengqiang et al. (2019), demonstrated that chemical nitrogen
fertilizers can induce a rapid short-term response and change soil
microbial and biochemical properties, which “overrides” the eect
of microbial consortia. Although urea has a high N content (46 %), it
volatilizes rapidly, with a loss of up to 30 kg.ha
-1
of N when broadcast
applied, which is equivalent to 25 % of the fertilizer added (Morales
et al., 2019). So, the excessive use of urea aects microorganisms and
their eciency in the ecient use of chemical fertilization (Ayvar et
al
., 2020) and increases production costs (López et al., 2018), with a
loss of 25 % of the fertilizer cost.
The positive correlation between corn yield and the percentage
of N in plots 1 and 3 (table 6), shows that there is potential in the
Table 6. Linear relationship between physicochemical components of the consortia and maize yield by Pearson correlation.
Treat.
Yield (t.ha
-1
) / Plot
EC
(dS.m
-1
)
Content (%)
1 2 3 Nitrogen Phosforus Potassium
T1 10.67 9.42 7.01 2.8 0.08 0.0015 0.05
T2 10.89 9.18 7.02 2.7 0.07 0.0015 0.04
T3 10.59 8.96 7.54 3.0 0.07 0.0017 0.04
T4 10.84 8.99 7.26 3.0 0.09 0.0016 0.04
T5 10.85 9.18 7.07 2.8 0.06 0.0011 0.04
T6 11.05 8.34 7.71 3.5 0.12 0.0033 0.07
CC Yield, plot 1 0.4965* 0.5964* 0.5804* 0.5642*
CC Yield, plot 2 -0.9479** -0.8037** -0.9087** -0.7207**
CC Yield, plot 3 0.9101** 0.6751** 0.8149** 0.5961**
Treat. treatments; Plot 1: plot with chemical fertilization+poultry manure; Plot 2: plot with chemical fertilization; Plot 3: plot with chemical fertilization+foliar fertilization;
CC: Pearson correlation coecient; EC: electrical conductivity. *signicant dierences; **highly signicant dierences.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rosabal et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234026
6-7 |
consortia as biofertilizers. Córdova-Bautista et al. (2009) used various
substrates and their combinations in the growth of Azospirillum and
Azotobacter collected in banana (Musa AAA Simmonds) soils for
the formulation of biofertilizers. In 15 treatments used, high total N
contents were obtained, but this element was higher in the organic
substrates, mainly in the combination of soil and poultry manure,
which also favored the density of Azospirillum.
Nitrogen is the main element for vegetative development and
the one of greatest care at the time of chemical fertilization, since its
loss is very common by leaching (Álvarez-Sánchez et al., 2014). In
agreement, Zhang et al. (2021) report that organic fertilizers decrease
nitrate loss by leaching and the presence of microorganisms prevents
N loss.
Microbial consortia presented P and K
+
(table 4) and the correlation
showed that there is some inuence of microbial consortia on maize
yield in plots 1 and 3 (table 6), so it is required to deepen these
studies, considering that K
+
is a primary element in fruit ripening and
P promotes tissue resistance (Cabos-Sánchez et al., 2019).
Castro and González (2021) demonstrated that the populations of
lactobacilli, yeasts, P solubilizers and N xers vary due to factors such
as aeration, substrates and activation time, so that the levels of nutrients
that can be incorporated into the plants and soil also vary. In this
sense, the incorporation of microbial consortia regulates the physical
and chemical properties of the system, mainly in EC, percentage of N,
P and K
+
. Namasivayam (2010) also reported that fertility is improved
after the application of benecial microorganisms, due to the rapid
mineralization of organic compounds by increasing the levels of N, P
and K
+
in the soil, making them available to the plant.
A great taxonomic and functional diversity of microbial
communities is found in mountain microorganisms, in which
versatile primary and secondary metabolisms are identied. This
allows certain microorganisms to expand their range of adaptive
elasticity, and therefore, modify their metabolisms to eciently
adapt to other environments in small lapses of time (Pandey and
Yarzábal, 2018), which coincides with the results of the present
research where the consortia of La Sepultura (T6) were the ones that
showed better performance in the maize crop. Contrary to the adapted
microorganisms, which have certain metabolic specialization, which
does not allow expanding their potential in the interaction with plants,
in this case, maize (Wang et al., 2018).
Conclusions
The use of microbial consortia from the Biosphere Reserve
“La Sepultura” (T6) increased corn yield. The microbial consortia
obtained from mountain and agricultural plots have potential for use
as biofertilizers in corn cultivation, when they are accompanied by
organic fertilization sources such as poultry manure, since it allows
strengthening their eects in the short term.
Acknowledgments
We are grateful for the collaboration of the people who participated
in the development of this project. To CONACYT for the scholarship
granted to the rst author to pursue graduate studies at DOCAS of
UNACH. To ICTIECH, for partially nancing the research through
the project “Fortalecimiento de capacidades locales para la producción
y uso de biofertilizantes con microorganismos nativos en la Frailesca,
Chiapas” in the 2022 Call for Proposals and for accepting the rst
author in “Unique support to the SEI, 2022”-CONCLUSION OF
POSTGRADUATE STUDIES.
Literature cited
Alarcón-Camacho, J., Recharte-Pineda, D.C., Yanqui-Díaz, F., Moreno-LLacza,
M., Montes-Yarasca, I.M., & Buendía-Molina, M.A. (2019). Elaboración
de un biofertilizante a partir de microorganismos ecientes autóctonos
en Perú. Anales Cientícos, 80(2), 515–522.https://doi.org/10.21704/
ac.v80i2.1484
Álvarez-Sánchez, E., Améndola-Massiotti, R., Cristóbal-Acevedo, D., & Soto-
Barajas, M.C. (2014). Pérdidas de nitrógeno por lixiviación en una pradera
mixta pastoreada en clima templado. Revista Fitotecnia Mexicana, 37(3),
271-278.https://doi.org/10.35196/rfm.2014.3.271
Ayvar, S., Díaz, J.F., Vargas, M., Mena, A., Tejeda, M.A., & Cuevas, Z. (2020).
Rentabilidad de sistemas de producción de grano y forraje de híbridos
de maíz, con fertilización biológica y química en trópico seco. Terra
Latinoamericana, 38(1), 9-16.https://doi.org/10.28940/terra.v38i1.507
Cabos-Sánchez, J., Bardales-Vásquez, C.B., León-Torres, C.A., & Gil-Ramírez,
L.A. (2019). Evaluación de las concentraciones de Nitrógeno, Fósforo y
Potasio del biol y biosol obtenidos a partir de estiércol de ganado vacuno
en un biodigestor de geomembrana de policloruro de vinilo. Arnaldoa,
26
(3), 1165-1176.http://dx.doi.org/10.22497/arnaldoa.263.26321
Castro, L., & González, J. (2021). Factores relacionados con la activación líquida
de microorganismos de montaña (mm). Agronomía Costarricense, 45(1),
81-92.http://www.mag.go.cr/rev_agr/v45n01_081.pdf
Castro, L., Murillo, M., Lorío, L., & Mata, R. (2015). Inoculación al suelo
con Pseudomonasuorescens, Azospirillumoryzae, Bacillussubtilis y
microorganismos de montaña (MM) y su efecto sobre sistema de rotación
soya-tomate bajo condiciones de invernadero. Agronomía Costarricense,
39(3), 21-36.http://www.mag.go.cr/rev_agr/v39n03_021.pdf
Centro Internacional de Mejoramiento de Maíz y Trigo (2012).Manual de
determinación de rendimiento. Acompañamiento Técnico para
productores. Centro Internacional de Mejoramiento de Maíz y Trigo.
Comité Estatal de Información Estadística y Geografía (2020).Gobierno del
Estado de Chiapas. Región VI, Frailesca. https://www.ceieg.chiapas.gob.
mx/productos/les/MAPASTEMREG/REGION_VI_FRAILESCA_post.
pdf
Córdova-Bautista, Y., Rivera-Cruz, M.C., Ferrera-Cerrato, R., Obrador-Olán,
J.J., &Córdova, V. (2009). Detección de bacterias benécas en suelo
con banano (Musa AAA Simmonds) cultivar ‘Gran enano’ y su potencial
para integrar un biofertilizante.Universidad y Ciencia, Trópico Húmedo,
25(3), 253-265.https://doi.org/10.19136/era.a25n3.199
Fertilab. (2015). Manejo de la Fertilización del maíz en base al Análisis de suelo.
Nota técnica. Laboratorio de análisis agrícolas-Suelo, agua, planta-
Fertilab®, Celaya, Guanajuato.https://www.fertilab.com.mx/Sitio/notas/
Fertilizacion%20del%20Maiz.pdf
Gamboa, J., Ruíz, E., Alvarado, C., Gutiérrez, F., Ruíz, V.M. & Medina, K.
(2020). Eect of microbial biofertilizers on the agronomic characteristic
of the plant and fruit quality of xcat´ ik pepper (Capsicum annuum L.).
Terra Latinoamericana, 38 (4): 817-826. https://doi.org/10.28940/terra.
v38i4.716
Guevara, F., Hernández, M.A., Ortíz, R.H., Acosta, R., Rosabal, L., La O,
M.A., Pinto,R., Martínez, F.B., &Reyes, M.B. (2021). Maíces locales
de La Frailesca chiapaneca: diversidad, usos múltiples y distribución.
Ediciones INCA.
Homan, G.J., Maas, E.V., Prichard, T.L., & Meyer, J.L. (1983). Salt tolerance
of corn in the Sacramento-San Joaquin Delta of California. Irrigation
science, 4(1), 31-44.https://www.ars.usda.gov/arsuserles/20361500/
pdf_pubs/P777.pdf
López, W., Reynoso, R., López, J., Camas, R., & Tasistro, A. (2018). Diagnóstico
de la compactación en suelos cultivados con maíz en la Región Fraylesca,
Chiapas. Revista Mexicana de Ciencias Agrícolas, 9(1), 65-79.https://doi.
org/10.29312/remexca.v9i1.848
Martínez-Aguilar, F.B., Guevara-Hernández, F., Aguilar-Jiménez, C.E., Rodríguez-
Larramendi, L.A., & Reyes-Sosa, M.B. (2020). Caracterización físico-
química y biológica del suelo cultivado con maíz en sistemas convencional,
agroecológico y mixto en la Frailesca, Chiapas. Terra Latinoamericana,
38(4), 871-881.https://doi.org/10.28940/terra.v38i4.793
Millán, F., Prato, J.G., La-Cruz, Y., & Sánchez, A. (2018). Methodological study
on pH and electric conductivity measurements in compost samples.
Revista Colombiana de Química, 47(2), 21-27.https://doi.org/10.15446/
rev.colomb.quim.v47n2.67338
Minitab, LLC. (2021). MinitabStatistical Software, Universidad Estatal de
Pensilvania. https://www.minitab.com
Morales, E. J., Rubí, M., López, J.A., Martínez, A.R., & Morales, E.J. (2019).
Urea (NBPT) una alternativa en la fertilización nitrogenada de cultivos
anuales. Revista Mexicana de Ciencias Agrícolas, 10(8), 1875-1886.
https://doi.org/10.29312/remexca.v10i8.1732
Namasivayam, K. R. (2010). Eect of formulation of Eective Microorganism (EM)
on post treatment persistence, microbial density and soil macronutrients.
Recent Research in Science and Technology, Microbiology, 2(5), 102-106.
https://www.cabdirect.org/cabdirect/abstract/20103302062
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rosabal et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234026
7-7 |
Pandey, A., & Yarzábal, L.A. (2018). Bioprospecting cold-adapted plant
groth promoting microorganisms from mountain environments.
Applied Microbiology and Biotechnology, 103(2), 643-657.https://doi.
org/10.1007/s00253-018-9515-2
Ramírez-Gerardo, M.G., Vázquez-Villegas, S., Méndez-Gómez, G.I., & Mejía-
Carranza, J. (2021). Caracterización de abonos orgánicos aplicados a
cultivos orícolas en el sur del Estado de México. CienciaUAT, 16(1),
150-161.https://doi.org/10.29059/cienciauat.v16i1.1518
Rosabal-Ayan, L., Macías-Coutiño, P., Maza-González, M., López-Vázquez, R.
Guevara-Hernández, F. (2021). Microorganismos del suelo y sus usos
potenciales en la agricultura frente al escenario del cambio climático.
Magna Scientia UCEVA, 1(1), 104-117.https://doi.org/10.54502/
msuceva.v1n1a14
Secretaría de Medioambiente y Recursos Naturales (2002, diciembre 31).
Norma Ocial Mexicana NOM-021-RECNAT-2000, Especicaciones
de fertilidad, salinidad y clasicación de los suelos. Diario Ocial de
la Federación.http://www.ordenjuridico.gob.mx/Documentos/Federal/
wo69255.pdf
Servicio de Información Agroalimentaria y Pesquera. (2020, Noviembre 15).
Avance de Siembras y Cosechas. Resumen Nacional por cultivo.http://
infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenDelegacion.
do
Shaheen, S., Khan, M., Khan, M. J., Jilani, S., Bibi, Z., Munir, M., & Kiran, M.
(2017). Eective Microorganisms (EM) co-applied with organic wastes
and NPK stimulate the growth, yield and quality of spinach (Spinacia
oleracea L.). Sarhad Journal of Agriculture,33(1), 30-41.http://dx.doi.
org/10.17582/journal.sja/2017.33.1.30.41
Suchini, J. G. (2012). Innovaciones agroecológicas para una producción
agropecuaria sostenible en la región del Trinio (Manual Técnico No.
104). Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación
y Enseñanza (CATIE).
Tripathi, S., Srivastava, P., Devi, R.S., & Bhadouria, R. (2020). Inuence of
synthetic fertilizers and pesticides on soil health and soil microbiology.
In Agrochemicals detection, treatment and remediation (pp. 25-54).
Butterworth-Heinemann.https://doi.org/10.1016/B978-0-08-103017-
2.00002-7
Wang, Y., Wang, Z.L., Zhang, Q., Hu, N., Li, Z., Lou, Y., Li. Y., Xue, D., Chen,
Y., Wu, Ch., Zou, Ch.B. & Kuzyakov, Y. (2018). Long-term eects of
nitrogen fertilization on aggregation and localization of carbon, nitrogen
and microbial activities in soil. Science of the total environment, 624,
1131-1139. https://doi.org/10.1016/j.scitotenv.2017.12.113
Zengqiang, L., Li, D., Ma, L., Yue, Y., Zhao, B., & Zhang, J.(2019). Eects of
straw management and nitrogen application rate on soil organic matter
fractions and microbial properties in North China Plain. Journal of Soils
Sediments, 19(2), 618–628.https://doi.org/10.1007/ s11368-018-2102-4
Zhang, M., Zhang, X., Zhang, L., Zeng,L., Liu, Y., Wang, X., He, P., Li, S., Liang,
G.,Zhou, W., & Ai, C. (2021). The stronger impact of inorganic nitrogen
fertilization on soil bacterial community than organic fertilization in
short-term condition. Geoderma, 382, 114752.https://doi.org/10.1016/j.
geoderma.2020.114752