© The Authors, 2023, Published by the Universidad del Zulia
*Corresponding author: avalverde@unheval.edu.pe
Keywords:
Environmental impact
Insecticides
Fruit trees
Pests
Ecacy
Alternative products with insecticidal eect in the control of Aulacaspis tubercularis; Newstead,
1906 (Hemiptera: Diaspididae) in mango cultivation
Productos alternativos con efecto insecticida en el control de Aulacaspis tubercularis
; Newstead,
1906 (Hemiptera: Diaspididae) en el cultivo de mango
Produtos alternativos com efeito inseticida no controle de Aulacaspis tubercularis; Newstead, 1906
(Hemiptera: Diaspididae) no cultivo de manga
Yaneth Isabel Ramos Vega
1
Agustina Valverde-Rodríguez
2*
Antonio Cornejo y Maldonado
1
Fleli Ricardo Jara Claudio
1
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234017
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v40.n2.07
Crop Production
Associate editor: Dra. Evelyn Peréz-Peréz
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Facultad de Ciencias Agrarias, Universidad Nacional
Hermilio Valdizán. Huanuco, Huanuco, Perú.
2
Centro de Investigación Frutícola Olerícola, Universidad
Nacional Hermilio Valdizán. Huanuco, Huanuco, Perú.
Received: 18-12-2022
Accepted: 24-04-2023
Published: 23-05-2023
Abstract
The predominant microclimates of the coast and the inter-Andean
valleys of Peru have favored the production and export of mango (Mangifera
indica L.) to more than 30 countries in the years 2020 - 2021. In this
process, phytosanitary support was of vital importance, however, the species
Aulacaspis tubercularis Newstead, 1906 (Hemiptera: Diaspididae) is a pest
that aects the resulting crop, increasing costs due to cleaning the fruits
for marketing. Control with insecticides contaminates the environment;
hence the objective of the study was to evaluate alternative products with
insecticidal eect and low environmental impact. The use of mineral oil (7.5
mL.L
-1
), azadirachtin (3.2 %, 5 mL.L
-1
), commercial powder detergent (20
g.L
-1
) and potassium soap (10 mL.L
-1
) in the eld and laboratory. In the eld,
9 trees were sprayed per treatment, every seven days at an interval of 15 days
and in the laboratory the individuals per bottle. The four evaluated products
had a signicant impact on the colonies in the eld (95.31 %, 88.89 %, 77.38
% and 68.04 %, respectively) in the rst three moments of application. In
the laboratory, commercial detergent and 3.2 % azadirachtin exerted high
mortality (100 %) on the third day post-application, followed by 100 %
mineral oil on the fourth day. The four products evaluated are recommended
for the management of A. tubercularis.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234017. Abril-Junio. ISSN 2477-9407.2-4 |
Resumen
Los microclimas predominantes de la costa y los valles
interandinos de Perú han favorecido la producción y la exportación
de mango (Mangifera indica L.) a más de 30 países en los años
2020 2021, en este proceso el respaldo tosanitario fue de vital
importancia, sin embargo, la especie Aulacaspis tubercularis
Newstead, 1906 (Hemiptera: Diaspididae) es una plaga que afecta el
cultivo al incrementar los costos, debido a la limpieza de los frutos
para la comercialización. El control con insecticidas contamina el
ambiente; de allí que el objetivo del estudio fue evaluar productos
alternativos con efecto insecticida y de bajo impacto ambiental.
Se evaluó el uso de aceite mineral (7,5 mL.L
-1
), azadiractina (3,2
%, 5 mL.L
-1
), detergente comercial en polvo (20 g.L
-1
) y jabón
potásico (10 mL.L
-1
) en campo y laboratorio. En campo se asperjó
9 árboles por tratamiento, cada siete días a intervalo de 15 días y en
laboratorio los individuos por frasco. Los cuatro productos evaluados
incidieron signicativamente sobre las colonias en campo (95,31 %,
88,89 %, 77,38 % y 68,04 %, respectivamente) en los tres primeros
momentos de aplicación. En laboratorio el detergente comercial y la
azadiractina 3,2 %, ejercieron alta mortalidad (100 %) al tercer día
pos-aplicación, seguido por aceite mineral con 100 % al cuarto día.
Los cuatro productos evaluados son recomendables para el manejo de
A. tubercularis.
Palabras clave: Impacto ambiental, frutales, plagas, ecacia.
Resumo
Os microclimas predominantes da costa e dos vales interandinos
do Peru favoreceram a produção e exportação de manga (Mangifera
indica L.) para mais de 30 países nos anos 2020 - 2021. Nesse
processo, o apoio tossanitário foi de vital importância , no entanto,
a espécie Aulacaspis tubercularis Newstead, 1906 (Hemiptera:
Diaspididae) é uma praga que afeta a cultura resultante, aumentando
os custos devido à limpeza dos frutos para comercialização. O controle
com inseticidas contamina o meio ambiente; portanto, o objetivo
do estudo foi avaliar produtos alternativos com efeito inseticida e
baixo impacto ambiental. A utilização de óleo mineral (7,5 mL.L
-1
),
azadiractina (3,2 %, 5 mL.L
-1
), detergente em pó comercial (20 g.L
-1
)
e sabão de potássio (10 mL.L
-1
) no campo e laboratório. No campo
foram pulverizadas 9 árvores por tratamento, a cada sete dias com
intervalo de 15 dias e no laboratório os indivíduos por frasco. Os
quatro produtos avaliados tiveram impacto signicativo nas colônias
no campo (95,31 %, 88,89 %, 77,38 % e 68,04 %, respectivamente)
nos três primeiros momentos de aplicação. Em laboratório, o
detergente comercial e azadiractina 3,2 % exerceram alta mortalidade
(100 %) no terceiro dia pós-aplicação, seguido do óleo mineral 100 %
no quarto dia. Os quatro produtos avaliados são recomendados para o
manejo de A. tubercularis.
Palavras-chave: Impacto ambiental, inseticidas, árvores frutíferas,
pragas, ecácia.
Introduction
Peru allocates approximately 29 thousand hectares of land for the
cultivation of mango (Mangifera indica L.). During the 2018 season,
Peru was positioned in third place among exporting countries, and in
the 2019-2020 season, it dropped to fth place (International Trade
Centre [ITC Trademap], 2021), with a production of approximately
535 thousand tons and 41.6 % for export as fresh fruit.
The decline in exports, for the most part, was subject to
international export standards, which require phytosanitary quality of
the fruit, without damage by agricultural pests (Food and Agricultural
Organization, & World Health Organization [FAO-WHO], 2005).
Among the most frequent pests in the crop, the species Ceratitis
capitata, Aulacaspis tubercularis, the genus Anastrepha, mites and
queresas stand out (Servicio Nacional de Sanidad Agraria [SENASA],
2018). The species A. tubercularis Newstead (Hemiptera: Diaspididae)
whose common name is white mealybug, is the most important
pest worldwide (Boyero et al., 2017; Del Pino et al., 2021; López-
Guillen et al., 2018), is highly polyphagous on various fruit trees
and wild vegetation, as well as on ornamental plants (Amún et al.,
2012). A. tubercularis is an emerging pest, which has accelerated its
infestations at an alarming rate and to date is of economic importance
from a phytosanitary point of view (Guillén et al., 2017). Its peculiar
behavior is the invasion of foliage and fruits (Abate and Dechassa,
2021; Noriega-Cantú et al., 2016; Walters, 2015) depreciating the
commercial value (Del Pino et al., 2020), with higher incidence in
summer seasons and in some cases present throughout the year and
the overlapping of generations (Joubert et al., 2000) that causes losses
of more than 50 %, by generating lesions with yellow spots of orange
hue on the fruit peel (Juárez-Hernández, 2014). The nymph stage
proves to be the most damaging as it feeds on the leaves and fruit of
the crop, causing premature fruit drop (Chiguachi et al., 2020).
In Peru, the pest has positioned itself in all mango producing
regions (SENASA, 2018) and controls are directed to the use of
highly polluting chemicals, and with limited ecacy (Ayalew et al.,
2015; Del Pino et al., 2020).
Taking into account the requirements of the ocial agency that
regulates the sanitary aspects of exports, with emphasis on the use
of chemical substances and pesticides (Ministry of Health [MINSA],
2023), it is necessary to search for new control alternatives. Although,
there is scarce information, with signicant eect, on the control of
A. tubercularis, as well as environmentally friendly and benecial
entomofauna, there are the studies of López-Guillén et al. (2018), on
the eect of phytosanitary pruning and the use of natural biological
controllers in the reduction of A. tubercularis in M. indica, similarly
Bienvenido et al. (2017), who determined the ecacy of eco-
compatible active principles with the sex pheromones of the species
A. tubercularis, considering them as active materials with low impact
on benecial entomofauna and reduced induction of resistance.
In Spain, among the products authorized by the phytosanitary
registry for mealybug control are azadirachtin (3.2 %) and kerosene
mineral oil (54.6 %) (Bienvenido et al., 2017; Chaudhary et al., 2017).
The eect of citroline (mineral oil) has also been studied, at the rate
of 50 mL.L
-1
and 75 mL.L
-1
with 91.3 % and 97.5 % mortality of A.
tubercularis colonies, respectively; likewise, sprays of pyriproxyfen
(0.3 mL.L
-1
) and dimethoate (2 mL.L
-1
) have been made with 100 %
ecacy (Urías-López et al., 2013).
The objective of the present study was to evaluate the eectiveness
of alternative products with insecticidal eect in the control of A.
tubercularis in mango crop. It was considered to work with pesticides
of low environmental impact and proven ecacy.
Materials and Methods
The experiment was carried out in the mango germplasm bank of
the Centro de Investigación Frutícola y Olericola (CIFO) and in the
Laboratorio de Fitopatología of the Escuela Profesional de Ingeniería
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Ramos et al. Rev. Fac. Agron. (LUZ). 2023 40(2): e234017
3-4 |
Agronómica, Universidad Nacional Hermilio Valdizan-Perú (S
09°45’; W 76°26’, 1,920 m.a.s.l.).
The products used as insecticide were mineral oil (7.5 mL.L
-1
),
azadirachtin (3.2 %, 5 mL.L
-1
), commercial detergent (Ariel®,
20 g.L
-1
) and potassium soap (10 mL.L
-1
), plus the absolute control,
with three replicates per treatment under a randomized complete
block design.
Nine trees of uniform size, ve years old and with high infestations
of A. tubercularis were selected as a sample for each treatment.
Field phase
Before applying the treatments, a blank test was carried out by
determining 27 L of water to be sprayed per treatment.
The spraying was done manually with a 20 L sprayer (Jacto PJHA,
Peru). The rst three applications were made in July 2021, with a
frequency every 7 days, followed by a rest interval of 15 days without
application and then resuming the second stage of three applications.
With a replication of the trial in August 2021.
Ten leaves per tree were randomly selected (8 leaves from the
lower and middle third, and 2 leaves from the upper third). The
samples infested with A. tubercularis were collected three days after
each application, in airtight vials with sealing facility and taken to the
Laboratorio de Fitopatología of the Universidad Hermilio Valdizán.
Counting of colonies with live and dead individuals per leaf was done
with a stereoscopic microscope. The colonies included females, males
and immature stages of the species. A total of six evaluations were
made during the trial, plus one in the 15-day rest interval between
applications and two at the end of the treatment.
Laboratory phase
During the laboratory phase, 27 leaves infested with A. tubercularis
were collected from the plants in the eld, containing ve colonies
each, which were washed with sterile distilled water to remove dust
and other particles. In the laboratory, 60 mL of each treatment was
applied to the samples, with daily evaluations of ecacy for seven
days.
Data analysis
Data were processed with InfoStat statistical software, version
2013 (Di-Rienzo et al., 2013) and the results subjected to analysis
of variance and LSD Fisher mean comparison test (p<0.05). The
formula of Henderson and Tilton (1955) and Abbot (1925) was used
to calculate ecacy.
Results and discussion
Prior to the application of the eld treatments, the density of A.
tubercularis was eight individuals per leaf. When the products were
applied, signicant dierences were found in the four evaluations
(p=0.0001; <0.05), from that moment on, the populations of A.
tubercularis remained at low densities without expressing any
dierence until the end of the trial, as shown in table 1.
Table 1. Mortality of Aulacaspis tubercularis after application under eld conditions.
Treataments
Previous colonies
per leaf
Days after application
7 15 22 30 37 45
% Mort. Med. Sign.**
Detergent 8.4 a 38.8±4.9 a 78.9±1.6 a 95.3±0.4 a 99.6±0.03 a 100±0.0 a 100±0.0 a
Mineral oil 8.67 a 21.5±8.0 b 55.6±4.2 a 88.8±2.3 a 94.9±1.1 a 100±0.0 a 100±0.0 a
Potassium soap 8.57 a 9.5±7.3 bc 39.7±4.7 b 68.0±3.2 b 84.8±1.4 ab 91.1±0.9 a 91.1±0.9 a
Azadirachtin 3.2 %. 8.63 a 1.9±6.4 c 46.1±3.5 a 77.3±1.1 a 87.8±0.4 a 99.2±0.3 a 99.7±0.08 a
**Percentage mortality adjusted by the Henderson and Tilton (1955) formula and the average number of previous colonies per leaf.
Means with dierent letters are statistically dierent, LSD Fisher (p<0.05).
The treatments with commercial detergent, mineral oil and
azadirachtin 3.2 % exerted the greatest control in the rst three
moments of application, achieving an ecacy of 95.31 %, 88.89 %
and 77.38 %, respectively. Potassium soap achieved an intermediate
ecacy of 68.04 %.
In the second stage of intervention and evaluation, it was observed
that the treatments of commercial detergent and mineral oil reached
100 % mortality at 37 days post-application, followed by azadirachtin
3.2 % with 99.24 %, while potassium soap was in the nal position
according to the order of importance.
Similar results were recorded by Urías-López et al. (2013), when
evaluating the ecacy of insecticides, mineral oil and a readily
available commercial detergent, as well as the mixture of these,
in the control of white scale in the mango crop, where mineral oil
caused 91.3 % mortality and the commercial detergent (Ariel
®
) 75.5
% mortality, while Fita et al. (2020), when evaluating the ecacy of
Azadirachta indica seed extract in the management of A. tubercularis,
recorded 59.17 % ecacy at 20 days post-application.
Detergent Mineral oil
Potassium soap Azadirachtin 3.2 %
Efficacy (%)
Figure 1. Estimated ecacy in percentage, in the control of A.
tubercularis in the mango crop, at 7, 15, 22, 30, 37 and
45 days after application (Henderson and Tilton, 1955).
Means with dierent letters indicate signicant dierences
(p<0.05).
Table 2 shows the susceptibility data of the colonies to the
treatments. The commercial detergent treatment and azadirachtin
3.2 % exerted the greatest control with 100 % on the third day after
application of the product, followed by potassium soap with 87.5 %,
and mineral oil (79.12 %) with the lowest percentage of ecacy;
however, the latter reached 100 % ecacy on the fourth day after
application. No mortality was observed in the absolute control. With
some similarity, Mendoza-Montero et al. (2017), when evaluating the
toxicity of insecticides recorded that propylene glycol monolaurate
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234017. Abril-Junio. ISSN 2477-9407.4-4 |
and mineral oil had 100 % and 98 %, respectively, of ecacy in the
mortality of adult females of A. tubercularis. Gursha et al. (2021),
studying the ecacy of Azadirachta indica L. in the control of A.
tubercularis, recorded a signicant reduction in infestations and
89.06 % mortality of the insect with the third application.
Table 2. Mortality of A. tubercularis under laboratory conditions.
Treatments
Previous
colonies
Days after application
1 2 3 4
% Mortality**
Detergent 8.00 a 29.10± 5.6 a 95.8±0.3 a 100±0.0 a 100±0.0 a
Mineral oil 8.00 a 4.1±7.6 bc 58.3±3.3 ab 79.1±1.6 b 100±0.0 a
Potassium
soap
8.00 a 16.6±6.6 b 45.8±4.3 b 87.5±1.0 ab 95.8±0.3 a
Azadirachtin
3.2 %.
8.00 a 4.13±7.6 bc 83.3±1.3 ab 100±0.0 a 100±0.0 a
**Percent colony mortality adjusted by Abbott’s formula
(1925) and the average number of colonies per leaf. Means with
dierent letters are statistically dierent, LSD Fisher (p<0.05).
Conclusions
The present investigation allowed concluding that mineral oil,
commercial detergent and azadirachtin 3.2 %, have potential eect
on the control of A. tubercularis, so its use as an alternative product
of low environmental impact can be frequent in the phytosanitary
management of the crop. Potassium soap in the medium and long
term reduces populations, a characteristic that makes it a useful
strategy in integrated management programs.
Literature cited
Abate, B., & Dechassa, N. (2021). White Mango Scale, Aulacaspis tubercularis
Newstead (Hemiptera: Diaspididae): a challenging mango production
in Ethiopia: a review. Bioprocess Engineering, 5(1), 17-22. https://doi.
org/10.11648/j.be.20210501.13
Abbott, W. S. (1925). A method of computing the eectiveness of an
insecticide. Journal of Economic Entomology, 18(2), 265-267.
Amún, C., Claps, L. E., & Saracho Bottero, M. A. (2012). Primer registro
de Aulacaspis tubercularis (Hemiptera: Diaspididae) en la
Argentina. Revista de la Sociedad Entomológica Argentina, 71(3-4),
289-291. http://www.scielo.org.ar/pdf/rsea/v71n3-4/v71n3-4a12.pdf
Ayalew, G., Fekadu, A., & Sisay, B. (2015). Appearance and chemical control
of white mango scale (Aulacaspis tubercularis) in Central Rift
Valley. Science, Technology and Arts Research Journal, 4(2), 59-63.
http://doi.org/10.4314/star.v4i2.8
Bienvenido, C., Campos, B., Calderón, E., Rodríguez, C., Boyero, J. R., &
Vela, J. M. (2017). Ecacia de materias activas para el control de la
cochinilla blanca (Aulacaspis tubercularis) en cultivos ecológicos de
mango del sur de España [Presentación de paper]. X Congreso Nacional
de Entomología Aplicada, La Rioja, Spain (Vol. 151).
Boyero, J. R., González, J. J., & Vela, J. M. (2017). Plagas del mango en España.
Phytoma España, 287, 23-28. https://www.phytoma.com/images/
pdf/287_marzo17_subtropicales_plagas_mango.pdf
Chaudhary, S., Kanwar, R. K., Sehgal, A., Cahill, D. M., Barrow, C. J., Sehgal,
R., & Kanwar, J. R. (2017). Progress on Azadirachta indica based
biopesticides in replacing synthetic toxic pesticides. Frontiers in Plant
Science, 8, 610. https://doi.org/10.3389/fpls.2017.00610
Chiguachi, J. A. M., Fajardo, A. G., Esquivel, J. S., González, D. M., Prieto,
Á. G., & Rincón, D. (2020). Manejo integrado del cultivo de mango
Mangifera indica L. Ciencias Agropecuarias, 6(1), 51-78. https://doi.
org/10.36436/24223484.267
Del Pino, M., Bienvenido, C., Boyero, J. R., & Vela, J. M. (2020). Biology,
ecology, and integrated pest management of the white mango scale,
Aulacaspis tubercularis Newstead, a new pest in southern Spain-a
review. Crop Protection, 133, 105160. https://doi.org/10.1016/j.
cropro.2020.105160
Del Pino, M., Bienvenido, C., Wong, M. E., Rodríguez, M. D. C., Boyero, J. R.,
& Vela, J. M. (2021). Inuence of Pre-Harvest Bagging on the Incidence
of Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) and
Fruit Quality in Mango. Insects, 12(6), 500. https://doi.org/10.3390/
insects12060500
Di-Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., &
Robledo C. W. (2013). InfoStat versión 2013. Universidad Nacional de
Córdoba. http://www.infostat.com.ar
Fita, T., Getu, E., Wakgari, M., & Woldetsadike, K. (2020). Ecacy of
Azadirachta indica (A. Juss) seed powder water extract against
Aulacuspis tubercularis newsteed (Homoptera: Diaspididae) on mango
(Mangifera indica L.) in East Wollega, Ethiopia. SINET: Ethiopian
Journal of Science, 43(1), 11-20. https://www.ajol.info/index.php/sinet/
article/view/203087
Food and Agricultural Organization, & World Health Organization.
(2005). Codex Standard for Mangoes (Mangifera indica L.) (CODEX
STAN 1884-1993). https://www.fao.org/fao-who-codexalimentarius/
sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.
org%252Fsites%252Fcodex%252FStandards%252FCXS%2B184-
1993%252FCXS_184e.pdf
Gursha, T. F., Degaga, E. G., Wakgari, M., & Wo/Tsadike, K. (July, 2021). Field
evaluation of insecticidal activity of aqueous Azadirachta indica L.
leaf powder against Aulacuspis tubercularis Newsteed (Homoptera:
Diaspididae) on mango (Mangifera indica L.) East Wollega Zone,
Ethiopia [Sesión de Conferencias]. Proceedings of the 1st International
Electronic Conference on Entomology. https://doi.org/10.3390/IECE-
10608.
Guillén, G. L., Cantú, D. N., & López, M. A. U. (2017). Distribución geográca
y estimación de daños de la escama blanca del mango Aulacaspis
Tubercularis Newstead, Chiapas, México. Revista Mexicana de
Ciencias Agrícolas, 8(8), 1851-1866. https://doi.org/10.29312/
remexca.v8i8.706
Henderson, C. F., & Tilton, E. W. (1955). Tests with acaricides against brown
wheat mite. Journal of Economic Entomology, 48(2), 157-161. https://
doi.org/10.1093/jee/48.2.157
International Trade Center Trademap. (2021). Estadísticas del comercio para
el desarrollo internacional de las empresas. https://www.trademap.org
Joubert, P. H., Daneel, M. S., & Grove, T. (February, 2000). Progress towards
integrated pest management (IPM) on mangoes in South Africa.
[Presentación de paper]. VI International Symposium on Mango.
Pattaya, Thailand. https://doi.org/10.17660/actahortic.2000.509.96
Juárez-Hernández, P. (2014). Respuesta fotosintética del mango en función
del daño por escama blanca del mango (Aulacaspis tubercularis
Newstead). [Tesis doctoral, Universidad de Texcoco]. Repositorio
institucional del Colegio de Postgraduados, Montecillo, Texcoco,
México. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/2449
López-Guillén, G., Urías-López, M. A., & Noriega-Cantú, D. H. (2018). Efecto
de podas tosanitarias en poblaciones de Aulacaspis tubercularis
Newstead (Hemiptera: Diaspididae) y sus enemigos naturales. Revista
Mexicana de Ciencias Agrícolas, 9(8), 1817-1822. https://doi.
org/10.29312/remexca.v9i8.1006
Mendoza-Montero, M. A., Hernández-Fuentes, L. M., Ramírez-Alarcón, S., &
Solís-Aguilar, J. F. (2017). Toxicidad de insecticidas en escama blanca
(Aulacaspis tubercularis Newstead) (Hemiptera: Diaspididae) del
mango (Mangifera indica L.). Agroproductividad, 10(3), 19-23. https://
revista-agroproductividad.org/index.php/agroproductividad/article/
view/963
Ministerio de Salud. (22 de abril de 2023). Salud ambiental e inocuidad
alimentaria. http://www.digesa.minsa.gob.pe/Orientacion/RIS_
SALUD_AMBIENTAL.pdf
Noriega-Cantú, D. H., Urías-López, M. A., González-Carrillo, J. A., & López-
Guillén, G. (2016). Abundancia Temporal de la Escama Blanca
del Mango, Aulacaspis tubercularis Newstead 1, en Guerrero,
México. Southwestern Entomologist, 41(3), 845-854. https://doi.
org/10.3958/059.041.0326
Servicio Nacional de Sanidad Agraria (24 de enero de 2018). Senasa previene
ingreso de moscas de la fruta a áreas reglamentadas. Recuperado el 22
de abril de 2023, de https://www.senasa.gob.pe/senasacontigo/senasa-
previene-ingreso-de-moscas-de-la-fruta-areas-reglamentadas/
Urías-López, M. A., Hernández-Fuentes, L. M., Osuna-García, J. A., Pérez-
Barraza, M. H., García-Álvarez, N., & González-Carrillo, J. A. (2013).
Aspersiones de insecticidas en campo para controlar la escama blanca del
mango (Hemiptera: Diaspididae). Revista Fitotecnia Mexicana, 36(2),
173-180. https://revistatotecniamexicana.org/documentos/36-2/9a.pdf
Walters, M. C. (2015). Insects of Cultivated Plants and Natural Pastures in
Southern Africa. African Entomology, 23(2), 526-527. https://doi.
org/10.4001/003.023.0210