© The Authors, 2023, Published by the Universidad del Zulia
*Corresponding author: erika.gp@vguadiana.tecnm.mx
Ixchel Abby Ortiz-Sánchez
Erika Cecilia Gamero-Posada
*
Cynthia Adriana Nava-Berumen
Sonia Valdez-Ortega
Oscar Gilberto Alaniz-Villanueva
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234014
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v40.n2.04
Crop Production
Associate editor: Dra. Evelyn Pérez-Pérez
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
Keywords:
Yield
Quality
Biofertilizers
Productivity and nutritional value of common beans with organic fertilization in Durango,
Mexico
Productividad y valor nutricional de frijol común con fertilización orgánica en Durango, México
Produtividade e valor nutricional do feijão comum com adubação orgânica em Durango, México
National Technological Institute of Mexico, Valle del
Guadiana campus, Durango-Mexico highway Km 22.5, CP.
34371, Villa Montemorelos Durango, Mexico.
Received:
03-12-2022
Accepted: 16-03-2023
Published: 21-04-2023
Abstract
Biofertilizers help to increase crop yields and nutritional quality,
reducing the use of agrochemicals that aect ecosystems and human health.
The objective of this study was to evaluate the yield and nutritional value
of the Pinto Rarámuri variety bean, under an organic fertilization scheme
in rainfed conditions in Durango, Mexico. Sowing was carried out in open
elds in Villa Montemorelos, Durango, using a randomized complete block
design with six treatments [manure tea (tea), sewage sludge (sludge), super
lean (lean), commercial organic fertilizer (foc), chemical fertilizer (fqf) and
control] ve repetitions, 30 plots and ve plants per plot as experimental unit.
The variables were: emergence percentage, height and pods per plant, seeds
per pod, seed thickness and length, weight of 100 seeds, yield, crude ber
percentage, protein, ash, fat, and nitrogen-free extract. A two-way analysis
of variance and Tukey’s comparison of means (p 0.05) were performed.
The treatments showed statistical dierence, the highest yield and weight of
100 seeds was presented by sludge, fqf and foc; while the highest number
of pods and plant height was obtained by sludge and fqf. The lowest yield,
pods per plant, seeds per pod and plant height were observed in control. The
nutritional value presented statistical equality between treatments. The use of
organic fertilization is a sustainable alternative to increase bean productivity
in the state of Durango, without disturbing its nutritional quality.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234014. Abril-Junio. ISSN 2477-9408.
2-6 |
Resumen
Los biofertilizantes ayudan a aumentar el rendimiento y la
calidad nutricional de los cultivos, permitiendo disminuir el uso de
agroquímicos que afectan los ecosistemas y la salud humana. El
objetivo del presente estudio fue evaluar el rendimiento y el valor
nutricional del frijol variedad Pinto Rarámuri, bajo un esquema de
fertilización orgánica en condiciones de temporal en Durango, México.
La siembra se realizó en campo abierto en Villa Montemorelos,
Durango, utilizando un diseño en bloques completos al azar con seis
tratamientos [té de estiércol (té), lodos residuales (lodos), súper magro
(magro), fertilizante orgánico comercial (foc), fertilizante químico
(fqf) y control], cinco réplicas, 30 parcelas y cinco plantas por
parcela como unidad experimental. Las variables fueron:porcentaje
de emergencia, altura y vainas por planta, semillas por vaina, grosor
y longitud de semilla, peso de 100 semillas, rendimiento, porcentaje
de bra cruda, proteína, ceniza, grasa y extracto libre de nitrógeno. Se
realizó un análisis de varianza doble y la comparación de medias de
Tukey (p 0,05). Los tratamientos mostraron diferencia estadística,
el mayor rendimiento y peso de 100 semillas fue para lodos, fqf y foc,
mientras que el mayor número de vainas y altura de planta fue para
lodos y fqf. El menor rendimiento, vainas por planta, semillas por
vaina y altura de planta se observó en el control. El valor nutricional
presentó igualdad estadística entre tratamientos. La utilización de
fertilización orgánica es una alternativa sustentable para elevar la
productividad de frijol en el estado de Durango, sin afectar su calidad
nutricional.
Palabras clave: rendimiento, calidad, biofertilizantes.
Resumo
Os biofertilizantes ajudam a aumentar o rendimento e a qualidade
nutricional das culturas, permitindo reducindo o uso de agroquímicos
que afetam os ecossistemas e a saúde humana. O objetivo deste estudo
foi avaliar o rendimento e o valor nutricional do feijão da variedade
Pinto Rarámuri, sob um esquema de adubação orgânica sob condições
de sequeiro em Durango, México. O plantio foi realizado em campos
abertos em Villa Montemorelos, Durango, usando um delineamento
de blocos completo aleatórios com seis tratamentos [infusão de
esterco (tea), mud of esgoto (sludge), super lean (lean), adubo
orgânico comercial (foc), adubação (fqf) e testemunha (control)]
cinco replicados, 30 parcelas e cinco plantas por parcela como unidade
experimental. As variáveis foram: porcentagem de emergência, altura
e vagens por planta, sementes por vagem, espessura e comprimento
das sementes, peso de 100 sementes, rendimento, porcentagem de
bra cruruta, proteína, cinzas, gordura e extrato livre de nitrogênio.
Foi realizada análise de variância duplo e comparação de médias de
Tukey (p 0,05). Os tratamentos apresentaram diferença estatística,
a maior rendimento e peso de 100 sementes foi para lodos, fqf e
foc; Enquanto o maior número de vagens e altura de planta foi para
sludge e fqf. Os menores rendimentos, vagens por planta, sementes
por vagem e altura da planta foram observados na control. O valor
nutricional apresentou igualdade estatística entre os tratamentos. A
utilização da adubação orgânica é uma alternativa sustentável para
aumentar a produtividade do feijão no estado de Durango, sem afetar
sua qualidade nutricional.
Palavras-chave: produtividade, qualidade, biofertilizers.
Introduction
The bean (Phaseolus vulgaris L.) is distributed worldwide and
is considered a staple food in the human diet due to its high nutrient
content (24.7 % protein, 69.4 % carbohydrates and 1.7 % lipids)
(SAGARPA-CONACyT, 2018).
Mexico ranked ninth in bean exports worldwide (1,288,806.47
t.year
-1
), representing a contribution of 4.65 % of production (FAO,
2021). In Durango, this crop is one of the main economic activities;
during the period 2015 to 2019, an average area of 228 thousand
ha was planted with an average temporary yield of 460 kg.ha
-1
(INFOSIAP, 2020).
Agriculture in Mexico presents a serious problem derived
from the inappropriate use of technology (machinery, fertilizers,
pesticides, among others); this has led to higher production costs and
soil deterioration (SADER-INIFAP, 2021a); the latter inuences the
nutritional quality of food that directly impacts human health (Stean
et al., 2017). In turn, bean production and nutritional quality are
aected by precipitation, soil fertility, and pathogenic organisms that
cause pests and diseases (Rosales-Serna et al., 2019).
The integrated knowledge of producers and scientists has allowed
the development of processes for the production of low-cost organic
inputs, as a sustainable option to minimize the damage caused by the
use of synthetic products in crop nutrition (SADER-INIFAP, 2021a).
These products are obtained from the microbial decomposition
of organic remains of animal and plant origin (Ladrón de Guevara
et al., 2017), as is the case of super lean fertilizer, which is prepared
with bovine rumen uid, water, whey, molasses, and ash, which are
anaerobically fermented (SADER-INIFAP, 2021a) and manure tea,
which results from the aerobic fermentation of manure, sh meal,
molasses, and water; both contain benecial microorganisms and
nutrients that act as plant growth enhancers, enrich the microora,
restore the structure of the soil and strengthen the defense system of
plants helping them to deal with pests and diseases, thus reducing the
use of agrochemicals (SADER-INIFAP, 2021b).
Favorable results have been obtained with the use of these
organic products, as is the case of rice production (Oryza sativa
L.) with manure tea (Diaz and Contreras, 2022), hybrid maize
(Zea mays) under the application of biocompost and vermicompost
(Fortis-Hernández et al., 2009), maize (Zea mays), tomato (Solanum
lycopersicum), chili (Capsicum annuum), sorghum (Sorghum
bicolor), common bean (Phaseolus vulgaris), pea (Pisum sativum),
pumpkin (Cucurbita pepo) and watermelon (Citrullus lanatus) with
leachate of vermicompost and soil microorganisms, which decreased
the dose of chemical fertilization by up to 35 % (Guardiola-Márquez
et al., 2019). Alvarado et al. (2017) concluded in their study, that
the use of mycorrhizal-based biofertilizer in common beans achieved
increases of 15 %, in the number of pods and grain weight per plant,
as well as the yield per hectare.
The information that people have about the eect of organic
fertilizers on bean production is scarce, however, products similar
to those of this work (manure tea and super lean fertilizer) have
been evaluated in the production of bananas (Musa acuminata AA)
(Jiménez-Esparza et al., 2019) and watermelon (Citrullus lanatus)
(González et al., 2015), respectively, highlighting the use of these
biofertilizers over control treatments.
More studies are required to demonstrate the feasibility of
using organic fertilizers to increase crop production and quality that
help mitigate the negative eects of agrochemicals. Therefore, the
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Ortiz-Sánchez et al. Rev. Fac. Agron. (LUZ). 2023 40(2): e2340143-6 |
objective of this research was to evaluate the yield and nutritional
value of the Pinto Rarámuri variety bean, under a scheme of organic
fertilization in rainfed conditions in Durango, Mexico.
Materials and methods
The experiment was carried out in the experimental eld and
laboratories of agrochemistry and plant biotechnology of the
National Technological Institute of México, Valle del Guadiana
campus, located at km 22.5 of the Durango-Mexico highway, Villa
Montemorelos, Durango, Mexico (latitude 24°00’18.25” N and
longitude 104°26’42.13”, 1,860 meters above sea level). At the
experimental site, an average temperature of 21.5 °C (SMN, 2021)
and accumulated precipitation of 632 mm were presented during the
evaluation period (spring-summer agricultural cycle).
The Pinto Rarámuri variety was used, short-cycle, drought-
tolerant crop. In rainfed conditions, maturity occurs between 90-95
days after sowing (dds) and irrigation 95-105 dds (Cruz et al., 2021).
The sowing was carried out on June 29th, 2020, in a vertisol soil,
according to the classication made by the World Reference Base
for soil resources (IUSS, 2015), with clay textural class. A precision
seeder (John Deere®, USA) was used with four rows separated at
0.76 m between them and 0.10 m between plants.
The cultural practices of the soil were carried out according to
the specications of the agricultural technical guide Durango and
La Laguna (SAGARPA-COFUPRO-INIFAP, 2017), under rainfed
conditions. For weed control, 50 % of the dose recommended by
the manufacturer of an herbicide based on uazifop-p-butyl and
fomesafen was applied; subsequently, a weeding was carried out
manually. Chemical pest control was made with a product based on
imidacloprid-beta-cyuthrin. The harvest was done at 106 dds.
For the production of the super lean biofertilizer, the methodology
described by SADER-INIFAP (2021a) was followed, adding
inocula of Azospirillum spp. and Trichoderma spp. with a minimum
concentration of 1x10
6
UFC.mL
-1
and 1x10
8
UFC.mL
-1
,
respectively,
both native to the Guadiana Valley, isolated and reproduced in the
plant biotechnology laboratory of the aforementioned institute.
Manure tea was prepared with bovine manure, under the
methodology of SADER-INIFAP (2021b); the mixture obtained was
inoculated with Azotobacter spp. (1x10
5
UFC.mL
-1
), Azospirillum
brasilense (1x10
5
UFC.mL
-1
) and Pseudomonas fluorescens
(1x10
5
UFC.mL
-1
), from Agribest
®
.
To evaluate the eect of organic fertilizers on crop productivity
and nutritional quality, a randomized complete block design was
used, with six treatments (table 1), ve blocks, and 30 plots,
covering a total experimental area of 19,863.36 m
2
. The experimental
sample consisted of ve plants, harvested from the center of each
experimental plot.
Table 1. Fertilization treatments evaluated in the production of
Pinto Rarámuri beans.
Identication Treatment Dose
Tea Manure tea 100 L.ha
-1
Sludge Sewage sludge 24 t.ha
-1
Lean Super lean biofertilizer 100 L.ha
-1
Foc Commercial organic fertilizer 40 L.ha
-1
Fqf Foliar chemical fertilizer 2 L.ha
-1
Control Control Unfertilized
The sludge was provided by the South Wastewater Treatment
Plant of the city of Durango, Mexico and was applied with a
mechanical shovel 15 days before sowing, distributing it uniformly
over the corresponding plots; Once dry, two steps of drag were
made to incorporate it into the soil. The rest of the treatments were
applied by foliar application using a 15 L hand sprinkler (Swissmex
®
,
Mexico). Lean, tea, and foc were applied at 0, 15, 30 and 45 (dds); fqf
was applied at 38 and 50 dds. The doses of organic treatments were
established based on previous research (Salcedo-Pérez et al., 2007).
Table 2 shows the chemical, physical and/or biological
composition of each of the fertilization treatments evaluated.
Table 2. Chemical, physical and/or biological composition of
fertilization treatments evaluated in the production of
Pinto Rarámuri beans.
Treatment Composition
tea
pH: 4.8; electrical conductivity (CE): 4.02 dS.m
-1
; Potassium (K):
516 ppm; Calcium (Ca): 380 ppm; Magnesium (mg): 48 ppm;
Sulfates (S-SO
4
): 890 ppm; Bicarbonates (HCO
3
): 414 ppm;
Phosphates (P-PO
4
): 27.6 ppm; Nitrates (N-NO
3
): Zn: 0.81 ppm.
lean
pH: 7.73; organic matter (MO): 0.48 %; Potassium (K): 0.188 %;
Calcium (Ca): 0.117 %; Magnesium (mg): 0.04 %; Total nitrogen:
0.017 %; Phosphorus (P): 0.028 %; Sodium (Na): 0.038 %
(Phosphates (P-PO
4
): 27.6 ppm; Nitrates (N-NO
3
): Zn: 0.81 ppm;
Chlorides (Cl): 135 ppm; Fe (10.32 ppm); Mn (1.48 ppm); Humic
material: 0.14 %; Humic acid: 0.03 %; Fulvic acids: 0.07 %.
sludge
pH: 6.8; organic matter (OM): 14.11 %; electrical conductivity
(EC):3.52 dS.m
-1
; Nitrogen (N): 0.70 %; Phosphorus (P): 247.92
mg. Kg
-1
; Potassium (K): 55 ppm; Arsenic (As):<0.1 ppm;
Cadmium (Cd):<0.34 ppm; Chromium (Cr):<124 ppm; Copper
(Cu): 66.48 ppm; Lead (Pb):<64 ppm, Mercury (Hg):<0.6 ppm;
Nickel (Ni): <56 ppm; Zinc (Zn): 429.43 ppm; Fecal coliforms:
<300 NMP.g
-1
Dry base; Salmonella: <300 NMP.g
-1
Dry base;
Helminth eggs: 0 Eggs.2 g
-1
g St; Moisture lost by drying: 77 %.
fqf
Potassium (K): 5.0 %; Calcium (Ca): 207 ppm; Magnesium (mg):
207 ppm; Total nitrogen: 9.1 %; Phosphorus (P): 6.6 %; Sulfur
(S): 1250 ppm; Boron (B): 332 ppm; Cobalt (Co): 17 ppm; Zn:
666 ppm; Copper (Cu): 332 ppm; Molybdenum (Mo): 42 ppm;
Manganese (Mn): 332 ppm; Iron (Fe): 415 ppm; Thiamine
hydrochloride: 33 ppm; Indoleacetic acid: 25 ppm.
foc
Bacillus subtillis, Trichoderma, Azospirillum, Azotobacter,
Rhizobium, Amino Acid Enzymes, Auxins.
tea: manure tea; sludge: sewage sludge; lean: super lean; foc: commercial
organic fertilizer; fqf: chemical fertilizer; ppm: parts per million.
The response variables were: emergence percentage (%) at 13 dds;
plant height (cm) at 55 dds; number of pods per plant and number of
seeds per pod (Morel et al., 2021); weight of 100 seeds (g) and yield
(t.ha
-1
) (Rosales-Serna et al., 2019); seed thickness and length (cm)
(Espinosa-Pérez et al., 2015).
The nutritional value of the bean grain was determined by
laboratory tests established in the manuals of the Association of
Ocial Analytical Chemists (AOAC, 2002). The samples consisted
of 100 bean seeds randomly selected in each treatment, which were
ground in a mill (Thomas-Wiley®, Laboratory Mill Mod. 4 type,
USA), to obtain homogeneous particles of 1 mm. The ours were
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234014. Abril-Junio. ISSN 2477-9408.
4-6 |
placed in sealed and labeled paper bags until the time of analysis.
The variables of nutritional value were: percentage of crude ber,
protein, fat, ash, and nitrogen-free extract.
Statistical analysis
A two-way analysis of variance (ANOVA) was performed
and signicant dierences between treatments (p ≤ 0.05) were
compared with Tukey’s test (p = 0.05), using InfoStat software (Di
Rienzo et al., 2018).
Results and discussion
In the ANOVA, signicant dierences (p 0.05) were found
between treatments for the variables evaluated. Table 3 shows the
comparison of means.
Table 3. Comparison of means of emergence, plant height, pods per plant, seeds per pod, seed thickness and length, weight of 100 grains,
and yield of Pinto Rarámuri beans inuenced by biofertilizers.
Productivity Variables control fqf lean tea foc sludge CV
Emergence (%) 100a 100a 90ab 80b 100a 80b 5.14
Plant height (cm) 16.7cd 22.95ab 15.10d 21.16bc 19.03bcd 27.80a 10.87
Pods per plant 13.55c 24.75ab 20.95b 21.25b 20.55b 26.61a 10.81
Seeds per pod 3.44c 3.51c 4.12ab 3.51c 4.33a 3.82bc 5.08
Seed thickness (cm) 0.75b 0.84a 0.74b 0.64c 0.86a 0.61c 4.76
Seed length (cm) 1.22a 1.26a 1.22a 1.06b 1.25a 1.06b 2.63
P100S (G) 26.00b 37.94a 29.22b 27.50b 36.33a 39.00a 6.11
Yield (t.ha
-1
) 1.21d 3.29ab 2.59bc 2.05cd 3.23ab 3.96a 16.63
Values with dierent letters in the same row are statistically dierent, according to Tukey (p 0.05). tea: manure tea; sludge: sewage sludge; lean: super lean; foc:
commercial organic fertilizer; fqf, chemical fertilizer; p100s: weight of 100 seeds, CV: coecient of variation.
The emergence of plants was 100 % in control treatments, fqf,
and foc, lean treatment presented 90 % and tea and sludge 80 %,
this negative eect of inoculated organic fertilizers (tea and lean),
can be attributed to imbalances in the synthesis of enzymes, due to
the competition for nutrients between seeds and inoculated bacteria,
as well as the presence of volatile metabolites that can positively
and negatively aect the emergence and vegetative development of
seedlings (León and Rojas, 2015).
When evaluating the plant height at 55 dds, it was observed
that the best treatments were sludge (27.80 cm) and fqf (22.95 cm);
Control plants and those treated with lean presented the lowest
height. The behavior observed in plants with the application of
sludge (Table 2) can be attributed to the contribution of organic
matter and macro and micronutrients by sludge (Salcedo-Pérez et
al., 2007), as well as in fqf, which in addition to nutrients, contains
thiamine hydrochloride and indoleacetic acid, both plant growth
factors. The results observed in treatments with lean (Table 2)
contrast with those reported by Martínez et al. (2016) and Quintero
et al. (2018), who reported that bean plants treated with commercial
biofertilizer, alone or combined with biostimulants, signicantly
increased plant height, compared to those unfertilized plants.
In terms of the number of pods per plant, all treatments
exceeded control (13.55 pods), highlighting sludge treatment
(26.61 pods). These results show that the use of some type of
fertilization, including organic, stimulates the greater production
of pods, indicating that the nutrients present in the fertilizer are
successfully assimilated by the plant, as reported by Morel et al.
(2021), who obtained a greater number of pods when applying an
organic fertilizer on common beans.
In the variable seeds per pod, plants treated with foc presented
4.33 seeds, followed by lean and sludge (p≤0.05); in the third
statistical group, tea, fqf, and control treatments showed no
statistical di
erence between them. The number of seeds per pod is
an important component of the yield that, together with the number
of pods, results in an important factor of elevation of the same
according to De la Fé et al. (2016), contrary to this, in the present
work an eect was observed on the weight of seeds and not on the
number of these (Table 3).
The weight of 100 seeds and yield showed statistical dierences
(p 0.05) between treatments, however, all are in the category
of medium seeds (between 25 to 40 g), according to Singh et al.
(1991a, b). The treatments with the highest weight of 100 seeds,
were sludge, fqf, and foc (39.00; 37.94, and 36.33 g, respectively),
which also presented the highest yields (3.96; 3.29 and 3.23 t.ha
-1
)
and exceed the average annual production under rainfed conditions
in the entity (0.460 t.ha
-1
) (INFOSIAP, 2020); in addition, the
treatment with sludge exceeded 38.00 g corresponding to the weight
of 100 seeds and 0.7-1.5 t.ha
-1
yield under rainfed conditions in
beans reported by Cruz et al. (2021).
The lowest weight of 100 seeds and yield was observed in
the control treatment (26.00 g and 1.21 t.ha
-1
, respectively). The
yield of the crop with sludge was higher than the rest of the other
treatments (Table 2), and was probably due to the contribution of
macro and micronutrients (N, P, K, Zn, among others), as well as
organic matter, which when assimilated by the plant during the
seed lling stage, contribute to its weight signicantly; as stated
by Salcedo-Pérez et al. (2007), when evaluating sewage sludge
as organic fertilizer in maize. Similarly, Arellano-Arciniega et al.
(2015) obtained the highest yield, number of pods, and weight of
100 seeds in common bean crops fertilized with bovine manure.
In this work it was found that not necessarily the seeds with
larger dimensions show the highest yields, as was the case of the
treatment with sludge which obtained the smallest seeds with the
highest yield, as well as the highest plant height, number of pods
and weight of 100 seeds, coinciding with the work of Quintero
et al. (2018), who applied biostimulants by foliar application on
common beans and observed the increase in morphophysiological
parameters, directly related to yield.
It has been reported that these types of products act as
stimulators of the physiological processes of plants, promoting
their growth and development (Calero et al., 2016), thus oering
a greater photosynthetic surface for the production of biomass that
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Ortiz-Sánchez et al. Rev. Fac. Agron. (LUZ). 2023 40(2): e2340145-6 |
is subsequently redirected to pods and seeds (Pumalpa et al., 2020;
Quintero et al. 2018); they also work as anti-stress agents and favor
the formation and lling of fruits (López and Pouza, 2014).
The application of organic matter to the soil favors some physical
characteristics such as the stability of aggregates, bulk density,
and porosity that improve the ow of air, water, and the radical
development of plants (Arellano-Arciniega et al., 2015). For their
part, the benecial microorganisms of agronomic interest present in
these bioproducts (Table 2), improve the physicochemical conditions
of the soil and favor the availability of nutrients for the plant, by
being directly or indirectly associated with its root system (Calero-
Hurtado et al., 2022). They are also capable of providing greater
protection and resistance against the attack of external agents (Morel
et al.,2021), and some genera such as Azospirillum and Rhizobium
which act as nitrogen-xing bacteria (Rangel et al., 2014).
In relation to the parameters evaluated on the nutritional value of
the bean, the analysis of variance did not nd statistically signicant
dierences (p ≥ 0.05); however, for some variables, the results tend to
be higher in organic treatments compared to chemical ones (Table 4).
Table 4. Comparison of means of variables of the nutritional value
of Pinto Rarámuri beans inuenced by biofertilizers.
Variable
(%)
control fqf lean tea foc sludge CV
Crude ber 2.65 3.29 3.89 3.04 2.86 3.32 19.80
Protein 23.21 22.91 22.34 23.85 24.39 23.08 12.08
Ash 4.89 4.97 4.63 4.40 4.65 4.48 15.98
Fat 1.17 1.13 1.17 1.44 1.06 1.10 16.22
Nitrogen-free
extract
68.07 67.71 67.97 67.27 67.04 68.02 4.25
tea: manure tea; sludge: sewage sludge; lean: super lean; foc: commercial
organic fertilizer; fqf, chemical fertilizer; CV: coecient of variation.
The percentage of crude ber ranged from 2.65 to 3.89, with
the highest values in lean treatment (3.89 %), followed by sludge
(3.32 %), while crude protein was higher in foc (24.39 %). As for
ash, the highest results were for fqf (4.97 %), followed by the control
(4.89 %). The fat content was presented in a higher percentage for
tea treatments (1.44) and the proportion of nitrogen-free extract
(carbohydrates) was higher in the control (68.07 %).
Most of the treatments evaluated in this study exceeded the results
reported by Rosales-Serna et al. (2019), for the Pinto Saltillo bean
variety with chemical fertilization under irrigation conditions, where
they obtained 2.5 % crude ber, 22.4 % protein, 4.1 % ash, 1.6 % fat,
and 69.5 % nitrogen-free extract, while the fat content was similar.
On the other hand, Fernandez and Sánchez (2017), obtained in Pinto
Saltillo beans, low values of ash, fat, and carbohydrates (2.53 %, 0.85
%, 39.02 %, respectively) and high in crude ber (7.18 %) and protein
(48.98 %) compared to those obtained in this study.
The percentage of protein obtained with the foc treatment may
be due to the fact that it is made from benecial microorganisms,
including Azospirillum spp. and Rhizobium spp. (table 2), bacteria
that contribute to improving plant nutrition by xing nitrogen (Rangel
et al., 2014) during the reproductive stage, aecting performance and
nutritional quality (Apáez et al., 2016), due to the increased protein
formation (Kozera et al., 2013).
Beans are one of the staple foods of the Mexican people and an
important source of protein, which allows it to be used as a substitute
for meat products and other foods with high protein content (FAO,
2018).
Chemical fertilization is used to provide micro and macronutrients
to the plant, which is why in the fqf treatment (Table 2) the highest
percentage of ashes was obtained (Alayón et al., 2014). On the other
hand, the ber contained in the beans helps the digestion process
favoring intestinal transit and providing greater satiety (Brouns et al.,
2017).
Conclusions
The organic fertilization treatments evaluated in this study
(sludge, tea, lean, and foc) showed a positive eect on the production
variables with respect to chemical fertilization (fqf) and the
control (without fertilization). Residual sludge exceeded chemical
fertilization by 0.67 t.ha
-1
, and any of the rest of the fertilizers to the
control. Depending on the type of fertilization, whether chemical or
organic, and the composition of the latter, the height of the plant, the
number of pods, the number of seeds per pod, and the weight of 100
seeds were increased, variables that inuenced the yield. The use
of organic fertilizers did not alter the nutritional quality of the bean
seed. Organic fertilization is a sustainable alternative to increase bean
productivity in the state of Durango.
Literature cited
Alayón Luaces, P., Rodríguez, V.A., Píccoli, A.B., Chabbal, M.D., Giménez,
L.I., & Martínez, G.C. (2014). Fertilización foliar con macronutrientes
a plantas de naranja Valencia late (Citrus sinensis (L.) Osbeck) y
tangorMurcott (Citrus reticulata Blanco x Citrus sinensis (L.) Osbeck).
Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de
Cuyo. Mendoza. Argentina, 46(1), 87-96. https://revistas.uncu.edu.ar/ojs/
index.php/RFCA/article/view/5631/4329
Alvarado Gómez, L.C., Graillet Juárez, E.M., Martínez Martínez, M.,
Fernández Figueroa, J.A., & Arieta Román, R. de J. (2017). El uso de
biofertilizantes en el cultivo de frijol (Phaseolus vulgaris L.). Revista
Biológico Agropecuaria Tuxpan, 5(2), 53–56. https://doi.org/10.47808/
revistabioagro.v5i2.110
Apáez Barrios, P., Escalante Estrada, J.A.S., Sosa Montes, E., Apáez Barrios, M.,
Rodríguez González, M.T., & Raya Montaño, Y.A. (2016). Producción
y calidad nutrimental de vaina del frijol chino, Vigna unguiculata (L.)
Walp, en función de arreglo topológico y tipo de fertilización. Revista de
la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 48(2):
31-42. https://doi.org/10.29312/remexca.v11i6.2226
Arellano-Arciniega, S., Osuna-Ceja, E.S., Martínez-Gamiño, M.A., & Reyes-
Muro, L. (2015). Rendimiento de frijol fertilizado con estiércol bovino
en condiciones de secano. RevistaFitotecnia Mexicana, 38(3), 313–318.
https://revistatotecniamexicana.org/documentos/38-3/9a.pdf
Asociation of Ocial Analytical Chemists (AOAC). (2002). Ocial Methods
of Analysis, (16ª ed.). Asociation of Ocial Analytical Chemists,
international Gaitherstourg.
Brouns, F., Delzenne, N., & Gibson G. (2017). The Dietary Fibers-FODMAP’s
Controversy. Cereal FoodsWorld, 62(3), 98-103. https://doi: 10.1094/
CFW-62-3-0098
Calero Hurtado, A., Pérez Diaz, Y., Pérez Reyes D. (2016). Efecto de diferentes
biopreparados combinado con Fitomas E en el comportamiento
agroproductivo del frijol común (Phaseolus vulgaris L.). Monfragüe
Desarrollo Resiliente, 7(2), 161-176. https://www.eweb.unex.es/eweb/
monfragueresilente/numero14/Art7.pdf
Calero-Hurtado, A., Pérez-Díaz, Y., Rodríguez-Lorenzo, M., y Rodríguez-
González, V. (2022). Aplicación conjunta del consorcio microorganismos
benécos y FitoMas-E® incrementan los indicadores agronómicos del
frijol. Revista U.D.C.A Actualidad & Divulgación Cientíca, 25(1),
e2252. https://doi.org/10.31910/rudca.v25.n1.2022.2252
Cruz Cruz, E., Acosta Gallegos, J.A., Reyes Muro, L., & Cueto Wong, J.A.
(2021). Variedades de frijol (Phaseolus vulgaris L.) del INIFAP. Instituto
Nacional de Investigaciones Forestales, Agrícolas y Pecuarias de México.
De la Fé Montenegro, C.F., Lamz Piedra, A., Cárdenas Travieso, R.M., &
Hernández Pérez, J. (2016). Agronomic response of newly-introduced
common vean (Phaseolus vulgaris L.) cultivars in Cuba. Revista Cultivos
Tropicales, 37(2), 102-107.http://dx.doi.org/10.13140/RG.2.1.2992.2805
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234014. Abril-Junio. ISSN 2477-9408.6-6 |
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., &
Robledo, C.W. (2018). InfoStat versión 2018. Grupo InfoStat, FCA,
Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
Diaz Almea, Y.M., & Contreras Miranda, J.A. (2022). Respuesta del cultivo de
arroz (Oryza sativa L.) a la aplicación foliar de biol, té de estiércol y ácido
húmico. Revista de Investigación Cientíca Manglar, 19(1), 85-90. http://
dx.doi.org/10.17268/manglar.2022.011
Espinosa-Pérez, E.N., Ramírez-Vallejo, P., Crosby-Galván, M.M., Estrada-
Gómez, J.A., Lucas-Florentino, B., & Chávez-Servia, J.L. (2015).
Clasicación de poblaciones nativas de frijol común del centro-sur de
México por morfología de semilla. Revista Fitotecnia Mexicana, 38(1),
29-38. https://www.redalyc.org/pdf/610/61035375005.pdf
Fernández, V., A.F., & Sánchez Chávez, E. (2017). Estudio de las propiedades
sicoquímicas y calidad nutricional en distintas variedades de frijol
consumidas en México. Nova Scientia, 9(1), 133-148. https://doi.
org/10.21640/ns.v9i18.763
Food and Agriculture Organization of the United Nations (FAO). (2018).
Legumbres. Pequeñas semillas, grandes soluciones. Ciudad de Panamá.
https://www.fao.org/3/ca2597es/CA2597ES.pdf
Food and Agriculture Organization of the United Nations (FAO). (2021). FAOSTAT.
Producción. Cultivos y Productos de Ganadería. México. Producción.
Cultivos Primarios. 2021. https://www.fao.org/faostat/es/#data/QCL
Fortis-Hernández, M., Leos-Rodríguez, J.A., Preciado-Rangel, P., Orona-Castillo,
I., García-Salazar, J.A., García-Hernández, J.L., & Orozco-Vidal,
J.A. (2009). Aplicación de abonos orgánicos en la producción de maíz
forrajero con riego por goteo. Terra Latinoamericana, 27(4), 329-336.
https://www.redalyc.org/articulo.oa?id=57313040007
González, J. D., Mosquera, J. D., y Torrente Trujillo, A. (2015). Efectos e impactos
ambientales en la producción y aplicación del abono supermagro en el
cultivo de sandía. Ingeniería y Región. 13(1), 103-111. https://doi.
org/10.25054/22161325.712
Guardiola-Márquez, C., Pacheco-Moscoa, A., &Senés-Guerrero, C. (2019).
Evaluación de biofertilizantes a base de microorganismos y lixiviado
de vermicomposta en cultivos de interés económico en México.
AgroProductividad, 12(3), 53-61. https://doi.org/10.32854/agrop.
v0i0.1348
International Union of Soil Science, Working Group WRB (IUSS). (2015). Base
referencial mundial del recurso suelo 2014, actualización 2015. Sistema
internacional de clasicación de suelos para la nomenclatura de suelos
y la creación de leyendas de mapas de suelos. Informes sobre recursos
mundiales de suelos 106. FAO, Roma.
Jiménez-Esparza, L. O., Decker-Campuzano, F. E., González-Parra, M. M., y Mera-
Andrade, R. (2019). Abonos orgánicos una alternativa en el desarrollo
de cormos de orito (Musa acuminata AA). Journal of the Selva Andina
Biosphere, 7(1), 54-62. https://doi.org/10.36610/j.jsab.2019.070100054
Kozera, W., Barczak, B., Knapowski, T., &Ralcewicz, M. (2013). Total and
fractional contents of proteins in bean seeds under the conditions of varied
fertilization with microelements. Journalof Central EuropeanAgriculture,
14(1), 319-327. https://doi.org/10.5513/jcea01/14.1.1201
Ladrón de Guevara González, S., Rodríguez Audirac, L., Canales Espinosa, D.,
Rivera Fernández, A., & Aguirre López, E. (2017). Manual de abonos
orgánicos, Universidad Veracruzana. https://www.uv.mx/television/
les/2015/10/abonos-organicos-09.pdf
León, L.H., & Rojas, L.M. (2015). Determinación del potencial promotor del
crecimiento vegetal de Azotobacterspp. aislados de la rizósfera de
malezas en cultivos de maíz (Zea mays L.). Scientia Agropecuaria, 6(4),
247-257. https://doi.org/10.17268/sci.agropecu.2015.04.02
López Pérez, Y., &Pouza Barrera, Y. (2014). Efecto de la aplicación del
bioestimulantetomas-e en tres etapas de desarrollo del cultivo del frijol
(Phaseolus Vulgaris L.). Revista DELOS Desarrollo Local Sostenible,
(20).http://www.eumed.net/rev/delos/20/cultivo-frijol.html
Martínez González, L., Reyes Guerrero, Y., Falcón Rodríguez, A., Nápoles
García, M. C., & Núñez Vázquez, M. (2016). Efecto de productos
bioactivos en plantas de frijol (Phaseolus vulgaris L.) biofertilizadas.
Cultivos Tropicales, 37(3), 165-171. https://www.redalyc.org/
journal/1932/193246976018
Morel López, E., Pistilli, R.E., Barrios Valiente, S., Caballero Casuriaga, O.,
Servin, A., Dasilva, M.O., Lugo, W., & Huerta, Á. (2021). Ecacia de
biofertilizantes en la producción de variedades de fréjol. Idesia (Arica),
39(3), 13-19. https://dx.doi.org/10.4067/S0718-34292021000300013
Pumalpa Meneses, D., Cantaro Segura, H., Estrada Cañari, R., & Huaringa
Joaquín, A. (2020). Caracterización Fenotípica y Agronómica de líneas
avanzadas del fríjol voluble (Phaseolus vulgaris L.) resistentes a virus en
Perú. Revista de Investigación e Innovación Agropecuaria y de Recursos
Naturales, 7(1), 7-20. http://www.scielo.org.bo/scielo.php?script=sci_
arttext&pid=S2409-16182020000100003
Quintero Rodríguez, E., Calero Hurtado, A., Pérez Díaz, Y., & Enríquez Gómez,
L. (2018). Efecto de diferentes bioestimulantes en el rendimiento del
frijol común. Revista Centro Agrícola Universidad Central “Marta
Abreu” de las Villas, 45(3), 73-80. https://doi.org/10.15446/rev.fac.cienc.
v9n1.82584
Rangel Lucio, J.A., Ramírez Gamma, R.M., Cervantes Ortíz, F., Mendoza Elos,
M., García Moya, E., & Rivera Reyes, J.G. (2014). Biofertilización de
Azospirillumspp. y rendimiento de grano de maíz, sorgo y trigo. Revista
de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo.
Mendoza. Argentina.46(2): 231-238. https://revistas.uncu.edu.ar/ojs3/
index.php/RFCA/article/view/5619
Rosales-Serna, R., Flores-Gallardo, H., Nava-Berumen, C.A., & Ortiz-Sánchez,
I.A. (2019). Rendimiento y calidad de grano en líneas mejoradas de frijol
cultivadas bajo riego en Durango, México. Revista Fitotecnia Mexicana
42(1), 39–46. https://www.cabdirect.org/cabdirect/abstract/20203432990
Salcedo-Pérez, E., Vázquez-Alarcón, A., KrishnamurthyRediar, L., Zamora-
Natera, F., Hernández-Álvarez, E., & Rodríguez-Macias, R. (2007).
Evaluación de lodos residuales como abono orgánico en suelos volcánicos
de uso agrícola y forestal en Jalisco, México. Interciencia, 32(2), 115-
120. https://www.redalyc.org/pdf/339/33932207.pdf
Secretaría de Agricultura y Desarrollo Rural (SADER), Instituto Nacional de
Investigaciones Agrícolas y Pecuaria (INIFAP). (2021a). Manuales
prácticos para la elaboración de bioinsumos, 3 Supermagro. https://www.
gob.mx/cms/uploads/attachment/le/737330/3_Supermagro.pdf
Secretaría de Agricultura y Desarrollo Rural (SADER), Instituto Nacional de
Investigaciones Agrícolas y Pecuarias (INIFAP). (2021b). Manuales
prácticos para la elaboración de bioinsumos, 6 Té de composta. https://
www.gob.mx/cms/uploads/attachment/le/737325/6_Te__ de_composta.
pdf
Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
(SAGARPA), Coordinadora Nacional de las Fundaciones Produce, A.C.
(COFUPRO), Instituto Nacional de Investigaciones Forestales, Agrícolas
y Pecuarias (INIFAP). (2017). Agenda Técnica Agrícola Durango y
la Laguna. México. Primera Edición. 51-56. https://www.academia.
edu/37892502/Agenda_T%C3%A9cnica_Durango_y_la_laguna
Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
(SAGARPA), Consejo Nacional de Ciencia y Tecnología (CONACyT).
(2018). Fondo Sectorial de Investigación en Materias, Agrícola, Pecuaria,
Acuacultura, Agrobiotecnología y Recursos Fitogenéticos. 72-73. https://
www.gob.mx/snics/acciones-y-programas/frijol-phaseolus-spp
Servicio de Información Agroalimentaria y Pesquera (INFOSIAP). (2020).
Anuario estadístico de la producción agrícola. http://infosiap.siap.gob.
mx:8080/agricola_siap_gobmx/AvanceNacionalCultivo.do
Singh, S.P., Gepts, P., & Debouck, D.G. (1991a). Races of common bean
(Phaseolus vulgaris, Fabaceae). Economic Botany, (45), 379-396. https://
doi.org/10.1007/BF02887079
Singh, S.P., Gutierrez, J.A., Molina, A., Urea, C., &Gepts, P. (1991b). Genetic
diversity in cultivated common bean: II. Marker-based analysis of
morphological and agronomic traits. Crop Science, 31(1), 23-29. https://
doi.org/10.2135/cropsci1991.0011183X003100010005x
Sistema Meteorológico Nacional (SMN). (2021). Estadísticas del año 2020.
https://smn.conagua.gob.mx/es/
Stean, J.J., Brevik, E.C., Burguess, L.C., & Cerda, A. (2017). The eect of soil
on human health: an overview. European Journal of Soil Science, 69(1):
159-171. https://doi.org/10.1111/ejss.12451