This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Bentancort et al. Rev. Fac. Agron. (LUZ). 2023 40(1): e234005
5-6 |
therefore we need more evidence to demonstrate direct degradation
of PS by Pseudomonas psychrophila, Brevibacterium sandarakinum,
Carnobacterium maltaromaticum, Pseudomonas sp., Providence sp.
and Corynebacterium sp.
The complex biodegradation mechanisms of both polystyrene
(PS) and polyethylene (PE) have yet to be well established. The
biodegradation process has been studied using pure bacterial cultures
and complex associations, with results that indicate that various
abiotic and biotic factors play a vital role in the biodegradation of
these plastic polymers in the environment, and particularly in the
digestive system of moths (Ghatge et al., 2020).
Conclusions
We were able to characterise the intestinal microora of the wax
moth (G. mellonella), detecting the presence of bacteria from genera
linked with benets to the health, viability and nutrition of the host
organisms, namely Carnobacterium maltaromaticum, Brevibacterium
sandarakinum, Pseudomonas psychrophila, Pseudomonas sp.,
Providence sp., Corynebacterium sp. These bacteria may play an
important role in the formation of microbial biolms that can foment
the degradation of low density polymers. However further studies
are needed to verify their action, in isolation or in consortium, in the
degradation of these polymers under dierent conditions of larval
development.
Funding source
The project “Biodegradation of plastics (expanded polystyrene),
through the identication of microorganisms in the digestive tract of
insects as a potential biotechnological mechanism for the management
and decontamination of ecosystems”, code 2018PRO-XA-02, from
the internal competition line of the Universidad Católica de Temuco,
Temuco, Chile, for the nancing of this work.
Cited literature
Abrusci, C., Pablos, J., Corrales, T., López, J., González, A., Marín, A. &
Catalina, F. (2011). Biodegradación por bacterias de lmes de polietileno
fotodegradado. Efecto de aditivos pro-oxidantes. Revista de Plásticos
Modernos: Ciencia y Tecnología de Polímeros, 660, 99-104. https://
dialnet.unirioja.es/servlet/articulo?codigo=3749134.
Agudelo-Londoño, N., Torres-Taborda, M.M., Alvarez-López, C. y Vélez-
Acosta, L.M. (2015). Bacteriocinas producidas por bacterias ácido
lácticas y su aplicación en la industria de alimentos. Revista Alimentos
Hoy, 23, 186-205. https://alimentoshoy.acta.org.co/index.php/hoy/article/
viewFile/356/306
Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M.
& Criddle, C.S. (2018). Biodegradation of polyethylene and plastic
mixtures in mealworms (larvae of Tenebrio molitor) and eects on the gut
microbiome. Environmental Science & Technology, 52, 6526-6533. doi:
https://doi.org/10.1021/acs.est.8b02301
Bombelli, P., Howe, J. & Bertocchini, C. (2017). Polyethylene bio-degradation by
caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8),
292-293. doi: https://doi.org/10.1016/j.cub.2017.02.060
Frías, C., Ize, I. & Gavilán, A. (2003). La situación de los envases de plástico
en México. Gaceta Ecológica, 69, 67-82. https://www.redalyc.org/
pdf/539/53906905.pdf
Geyer, R., Jambeck, J. & Lavender, K. (2017). Production, use, and fate of all
plastics ever made. Science Advances, 3(7), e1700782. DOI: 10.1126/
sciadv.1700782
Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. (2020). Biodegradation of
polyethylene: a brief review. Applied Biological Chemistry, 63, 27. doi:
https://doi.org/10.1186/s13765-020-00511-3.
Hadad, D., Geresh, S. & Sivan, A. (2005). Biodegradation of polyethylene by
the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied
Microbiology, 98, 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x
Huerta, L., Wanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Van
Der Ploeg, M., Besseling, E., Koelmans, A. & Geissen, V. (2016).
Microplastics in the terrestrial ecosystem: implications for Lumbricus
terrestres (Oligochaeta, Lumbricidae). Environmental Science &
Technology, 50, 2685-2691. doi: https://doi.org/10.1021/acs.est.5b05478
Huerta, L., Wanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V.
& Garbeva, P. (2018). Decay of low-density polyethylene by bacteria
extracted from earthworm’s guts: A potential for soil restoration. Science
of The Total Environment, 624, 753-757. doi: https://doi.org/10.1016/j.
scitotenv.2017.12.144
Kämpfer, P., Schäfer, J., Lodders, N. & Busse, H.J. (2010). Brevibacterium
sandarakinum sp. nov., isolated from a wall of an indoor environment.
International Journal of Systematic and Evolutionary Microbiology, 60,
909-913. doi: 10.1099/ijs.0.014100-0
Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J. & Kim, D.H. (2020).
Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut
of superworms (Larvae of Zophobas atratus). Environmental Science &
Technology, 54, (11):6987-6996. doi: 10.1021/acs.est.0c01495.
Kong, H. G., Kim, H. H., Chung, J. H., Jun, J. H., Lee, S., Kim, H. M., et al. (2019).
The Galleria mellonella hologenome supports microbiota-independent
metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26, 2451–
2464. doi: https://doi.org/10.1016/j.celrep.2019.02.018.
Kumar, S. & Raut, S. (2015). Microbial degradation of low density polyethylene
(LDPE): A review. Journal of Environmental Chemical Engineering,
3(1), 462-473. doi: https://doi.org/10.1016/j.jece.2015.01.003
Leisner, J.J., Laursen, B.G., Djamel, H.P. & Dalgaard, P. (2007). Carnobacterium:
positive and negative ejects in the environment and in foods.
FEMS Microbiology Reviews, 31, 592-613. doi: 10.1111/j.1574-
6976.2007.00080.x
Lewin, G.R., Marc, C.C., Horn, H.A., Mcdonald, B.R., Stankey, R.J., Fox, B.G.
& Currie, C.R. (2016). Evolution and ecology of Actinobacteria and their
bioenergy applications. Annual Review of Microbiology, 70, 235-254. doi:
10.1146/annurev-micro-102215-095748.
Lou, Y., Ekaterina, P., Yang S.S., Lu, B., Liu, B., Ren, N., Corvini, P., & Xing,
D. (2020). Biodegradation of polyethylene and polystyrene by greater
wax moth larvae (Galleria mellonella L.) and the eect of co-diet
supplementation on the core gut microbiome. Environmental Science
& Technology, 54, 2821-2831. doi:https://dx.doi.org/10.1021/acs.
est.9b07044
Mason, C.J., Clair, A., Peier, M., Gomez, E., Jones, A.G., Felton, G.W. &
Hoover, K. (2020). Diet inuences proliferation and stability of gut
bacterial populations in herbivorous lepidopteran larvae. PLoS ONE,
15(3), e0229848. doi: 10.1371/journal.pone.0229848
Mukherjee, K., Raju, R., Fischer, R. & Vilcinskas, A. (2013). Galleria mellonella
as a model host to study gut microbe homeostasis and brain infection by
the human pathogen Listeria monocytogenes. Advances in Biochemical
Engineering / Biotechnology, 135, 27-39. doi: 10.1007/10_2013_203
Ng, E., Huerta, E., Eldridge, S., Johnston, P., Hu, H., Geissen, V. & Chen, D.
(2018). An overview of microplastic and nanoplastic pollution in
agroecosystems. Science of The Total Environment, 627, 1377-1388. doi:
https://doi.org/10.1016/j.scitotenv.2018.01.341
Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y. &
Zhang W. (2019). Biodegradation of polyethylene by Enterobacter sp.
D1 from the guts of wax moth Galleria mellonella. International Journal
of Environmental Research and Public Health, 16, 1941. doi:10.3390/
ijerph16111941.
Rizzi, A., Crotti, E., Borruso, L., Jucker, C., Lupi, D., Colombo, M. & Daonchio,
D. (2013). Characterization of the bacterial community associated with
larvae and adults of Anoplophora chinensis collected in Italy by culture
and culture-independent methods. BioMed Research International, 2013,
420287. doi: 10.1155/2013/420287
Ruiz, J., Vilanova-Cuevas, B., Alvarez, A., Martín, E., Malizia, A., Galindo-
Cardona, A., de Cristóbal, R., Occhionero, M., Chalup, A., Monmany-
Garzía, A. & Godoy-Vitorino, F. (2022). The bacterial and fungal gut
microbiota of the greater wax moth, Galleria mellonella L. consuming
polyethylene and polystyrene. Frontiers in Microbiology, 13, 918861.
861. doi: 10.3389/fmicb.2022.918861
Santo, M., Weitsman, R. & Silvan, A. (2013). The role of the copper-binding
enzyme – laccase - in the biodegradation of polyethylene by the
actinomycete Rhodococcus ruber. International Biodeterioration &
Biodegradation, 84; 204-210. https://doi.org/10.1016/j.ibiod.2012.03.001
Shannon, A.L., Attwood, G., Hopcroft, D.H. & Christeller,J.T. (2001).
Characterization of lactic acid bacteria in the larval midgut of the
keratinophagous lepidopteran, Hofmannophila pseudospretella. Letters in
Applied Microbiology, 32, 36-41. doi: 10.1046/j.1472-765x.2001.00854.x
Silva, A.B., Bastos, A.S., Justino, C., Da Costa, J., Duarte, A. & Rocha-Santos,
T. (2018). Microplastics in the environment: Challenges in analytical
chemistry, A review. Analytica Chimica Acta, 1017; 1-19. doi: https://doi.
org/10.1016/j.aca.2018.02.043
Suzuki, M., Taylor, L. & Delong, E. (2000). Quantitative analysis of small-subunit
rRNA genes in mixed microbial populations via 5′-Nuclease assays.
Applied and Environmental Microbiology, 66(11), 4605-4614. doi:
https://doi.org/10.1128/AEM.66.11.4605-4614.2000
Torres De La Cruz, M., Cortez, H., Ortiz, C., Cappello, S. y Pérez De La
Cruz, M. (2014). Cepas monospóricas de Metarhizium anisopliae y su