This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(1): e234004. Enero-Marzo. ISSN 2477-9407.6-7 |
The gure 4 shows the logarithmic dissipation of imidacloprid
for the two types of application, evidencing that AAF and GPP also
caused a staggered dissipation in the peel and pulp of the avocado as
time increases.
Figure 4. Logarithmic dissipation of imidacloprid for the two
types of application (spray and drip) on avocado peel
and pulp.
In a study of imidacloprid dissipation by Zhai et al. (2022) in
Chinese onion (Allium tuberosum) they observed dissipation dynamics
consistent with rst order kinetics, with nal residual levels between
0.00923 and 0.166 mg.kg
-1
below the MRL (1 mg.kg
-1
) with a risk
assessment index <1 indicating that they are safe for consumption.
Similar results were obtained by Mohapatra et al. (2019) in
the evaluation of imidacloprid residue levels in pomegranate fruits
(Punica granatum) for two years, they found rst order reaction
kinetics with a degradation half-life of 8 to 11.1 days; the MRL of
imidacloprid in pomegranate were lower than their MRL (1 mg.kg
-1
),
with a pre-harvest interval of only one day. On the other hand, Jawad
& Hermize (2020) in an analysis of imidacloprid residues on fruits of
sweet Karisma bell pepper (Capsicum annum L), reported that after
eight days, the residual of imidacloprid was 0.07 mg.kg
-1
lower than
the MRL.
According to Zhai et al. (2022) and Hladik et al. (2018), the
agroecological zone where a pesticide is applied would have its eect
mainly on the daily dissipation rate of the residue. In this regard,
Pereira et al. (2021), and Zhou et al. (2021), highlight that in arid areas,
high temperatures, and wind action would be the determining factors
in pesticide dissipation. In the same order of ideas, Zhou et al. (2021),
and Peng et al. (2021) state that the dissipation dynamics establishes
a rapid initial decrease depending on climatic conditions. According
to Pang et al. (2020), the dissipation of systemic insecticides such as
imidacloprid in avocado fruit pulp is greater than the dissipation of
insecticides in the peel; this degradation is complex and the rate of
internal metabolization is variable and is determined by enzymatic
actions, characteristic of plant tissue. However, Gonzalez (2009)
refers that the residues and dissipation of a pesticide are inuenced
by the application coverage and the size of the application drop; the
smaller the pesticide drop, the greater the persistence of the pesticide
and therefore the greater the residual. On the other hand, Mohapatra
et al. (2019), state that the increase in temperature facilitates several
processes involved in the dissipation of an insecticide, so an increase
in temperature favors the solubility of the insecticide. Imidacloprid
presents high solubility in water, favoring its dissipation.
The information provided by this research is of utmost importance
for phytosanitary safety and food safety, demonstrating that the
manufacturer’s recommendation regarding the insecticide withdrawal
period (7 days) is not met when 1.0 and 1.5 mL.L
-1
AAF are applied,
because the residual of imidacloprid in the peel exceeded the MRL.
No levels exceeding the MRL were detected in the pulp. In this sense,
it is advisable for future research to develop a more appropriate and
representative withdrawal period for avocado cultivation in arid areas
where its cultivation is of great importance.
Conclusions
It was determined that the application of imidacloprid by drip at
the foot of the plant at a dose of 0.5 mL.L
-1
caused the lowest residual,
and the highest percentage of dissipation in the peel and pulp of
avocado fruits, reaching the highest daily dissipation rate in the pulp.
Spraying imidacloprid to the foliage at a dose of 1.5 mL.L
-1
caused
the highest residual, and the lowest percentage of dissipation in the
peel and pulp of the fruits, generating residues of imidacloprid in the
peel that exceeded the MRL. None of the treatments exceeded the
MRL in the pulp. The dissipation rate was higher in the pulp than in
the peel. The imidacloprid dissipation curve model was t to a rst-
order logarithmic equation.
Literature cited
Aguirre, L., García, F., García, J., Illera, M., Juncabella, M., Lizondo, M., Lluch,
A., Martín, M., Mateos, B., Ochoa, C., Ortega, M., Pujol, M., Reig, M.,
Torres, M., Antunez, S., Carro, A., García, A., Niubo, C., Oliver, M.,
Caturla, M., Celma, C., Encima, G., Jansat, J., Nieto, C., Pérez, J., Rovira,
M., Tost, D., y Cortez, R. (2001). Validación de métodos analíticos.
Asociación Española de Farmacéuticos de la Industria. Barcelona,
España. 315 ppx. https://es.scribd.com/doc/260069977/Validacion-de-
Metodos-Analiticos-Asociaciacion-Espanola-de-Farmaceuticos-de-la-
industria-pdf
Agriquem - AGQ (2021). Identicación de las principales materias causantes de
positivos de plaguicidas en Palto. https://agqlabs.pe/2021/03/30/cambios-
en-limites-de-residuos-de-plaguicidas-en-palto/
AOAC. (2007). Ocial Method 2007:01. Pesticide Residues in Foods by
Acetonitrile. Extraction and Partitioning with Magnesium Sulfate.
https://nucleus.iaea.org/sites/fcris/Shared%20Documents/SOP/
AOAC_2007_01.pdf
Barrientos, A., García, E., y Avitia, E. (1996). Anatomía del fruto de aguacate.
Revista Chapingo Serie Horticultura, 2(2),189-198. https://doi.
org/10.5154/r.rchsh.1995.06.041
Bondareva, L., & Fedorova, N. (2021). Pesticides: Behavior in agricultural
soil and plants. Molecules, 26(17), 5370. https://doi.org/10.3390/
molecules26175370
Castillo, B., Ruiz, J., Manrique, M., y Pozo, C. (2020). Contaminación por
plaguicidas agrícolas en los campos de cultivos en Cañete (Perú). Revista
Espacios, 41(10), 1-11. http://www.revistaespacios.com/a20v41n10/
a20v41n10p11.pdf
CFR - Code of federal regulation - USA. (2022). Imidacloprid: tolerances for
residues. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/
part-180/subpart-C/section-180.472
Chandra, R., Sharpanabharathi, N., Prusty, B., Azeez, P., & Kurakalva, R.
(2021). Organochlorine pesticide residues in plants and their possible
ecotoxicological and agri food impacts. Scientic reports, 11(1),17841.
http://dx.doi.org/10.1038/s41598-021-97286-4
Collavino, M., y Giménez, R. (2008). Efecto del imidacloprid en el control de la
polilla del tomate (Tuta absoluta M.). Idesia (Arica), 26(1), 65-72. http://
dx.doi.org/10.4067/S0718-34292008000100009
Delgado-Zegarra, J., Alvarez-Risco, A., y Yañez, J. A. (2018). Uso indiscriminado
de pesticidas y ausencia de control sanitario para el mercado interno
en el Perú. Pan American Journal of Public Health, 42,1-6. https://doi.
org/10.26633/RPSP.2018.3
Durán-Quirós, A., González-Lutz, M., Vargas-Hernández, G., y Mora-Acedo, D.
(2017). Situaciones de riesgo potencial relacionadas con la aplicación
de agroquímicos en los sistemas hortícolas. Agronomía Costarricense,
41(2), 67-77. http://dx.doi.org/10.15517/rac.v41i2.31300
Ettiene, G., Bauza, R., Sandoval, L., Medina, D., Raga, J., Quiros, M.,
Petit, Y., Poleo, N., y Dorado, I. (2017). Estudio de sorción de los
insecticidas imidacloprid y tiametoxam en muestras de suelo. Revista
de la Facultad de Agronomía de la Universidad del Zulia, 33(4), 458-
481. https://produccioncienticaluz.org/index.php/agronomia/article/
view/27210/27832
Fernández, M., y Giménez, R. (2005). Impacto de Imidacloprid en la descomposición
orgánica edáca en cultivo de duraznero. Agricultura Técnica, 65(4),
370-377. http://dx.doi.org/10.4067/S0365-28072005000400003
García-Vargas, M., Contreras, M., & Castro, E. (2020). Avocado-Derived Biomass
as a Source of Bioenergy and Bioproducts. Applied Sciences, 10(22),
8195. https://doi.org/10.3390/app10228195