This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Agüero-Fernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e223953
5-6 |
Table 1. Variety × NaCl × AMF interaction in response to the effect of Rhizophagus fasciculatum (AMF) as a NaCl stress mitigator on
biochemical and fungal variables of Ocimum basilicum varieties subjected to NaCl stress.
Variety
NaCl
(mM)
AMF
(g)
STP
(mg.g
-1
)
RTP
(mg.g
-1
)
SP
(mg.g
-1
)
RP
(mg.g
-1
)
SGA (U mg
protein)
RGA (U mg
protein)
Colonization (%)
Napoletano 0 CM 22.59±0.13b 16.37±0.109a 0.24±0.00d 0.21±0.00i 0.96±0.00c 0.83±0.02e 64.50±0.58a
Napoletano 50 CM 9.56±0.03g 6.55±0.36a 0.35±0.00b 0.28±0.00de 1.45±0.03ab 2.23±0.00b 50.00±0.00c
Napoletano 100 CM 9.48±0.00g 6.13±0.01a 0.36±0.00b 0.30±0.00c 1.50±0.02a 3.19±0.01a 37.75±0.50e
Napoletano 0 SM 22.20±0.14c 16.17±0.06a 0.22±0.00e 0.21±0.00i 0.97±0.01c 0.74±0.19e 0.00±0.00f
Napoletano 50 SM 9.29±0.00gh 6.40±0.13a 0.29±0.00c 0.21±0.00i 1.43±0.03b 2.02±0.04c 0.00±0.00f
Napoletano 100 SM 9.14±0.00h 6.10±0.00a 0.30±0.01c 0.26±0.01fg 1.44±0.04b 2.10±0.04bc 0.00±0.00f
Nufar 0 CM 24.96±0.15a 16.48±0.06a 0.25±0.01d 0.26±0.00g 0.98±0.01c 0.83±0.01e 65.25±2.06a
Nufar 50 CM 19.44±0.11d 12.86±0.09a 0.46±0.01a 0.32±0.01b 0.44±0.01d 1.71±0.07d 58.50±0.58b
Nufar 100 CM 18.85±0.11e 12.60±0.27a 0.37±0.01b 0.44±0.00a 0.45±0.01d 1.74±0.02d 44.00±1.15d
Nufar 0 SM 22.59±0.13b 16.42±0.03a 0.25±0.00d 0.25±0.00h 0.96±0.00c 0.82±0.01e 0.00±0.00f
Nufar 50 SM 18.22±0.12f 12.55±0.31a 0.30±0.01c 0.27±0.00ef 0.44±0.02d 1.76±0.05d 0.00±0.00f
Nufar 100 SM 18.51±0.12f 12.15±0.09a 0.30±0.00c 0.29±0.00d 0.45±0.00d 1.75±0.02d 0.00±0.00f
Signicance level
***
ns
*** *** ** *** ***
NaCl= Sodium chloride (mM); AMF= Arbuscular mycorrhizal fungi (CM = with AMF, SM = without AMF) (g); STP= Shoot total protein content; RTP= Root total protein
content; SP= Shoot proline content; RP=Root proline content; SGA= Shoot glutathione activity (U mg
-1
of protein); RGA= Root glutathione activity. Average values ±
standard deviation with different letters in the same column differ statistically (Tukey’s HSD, P = 0.05). Signicance level: ns= not signicant; ** = P ≤ 0.01; *** = P ≤
0.001.
Literature cited
Abeer, H., Abd_Allah, E.F., Alqarawi, A.A., El-Didamony, G.S., Alwhibi, M.,
Egamberdieva, D. & Ahmad, P. (2014). Alleviation of adverse impact
of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi.
Pakistan Journal of Botany, 46, 2003-2013.
Abeer, H., Abd_Allah, E.F., Alqarawi, A.A. & Dilfuza, E. (2015). Induction of salt
stress tolerance in cowpea (Vigna unguiculata L.) Walp. by arbuscular
mycorrhizal fungi. Legume Research. 38 (5), 579-588. https://doi.
org/10.18805/lr.v38i5.5933
Aggarwal, A., Kadian, N., Neetu, K., Tanwar, A. & Gupta, K.K. (2012).
Arbuscular mycorrhizal symbiosis and alleviation of salinity stress.
Journal of Applied Natural Science, 4, 144-155. https://doi.org/10.31018/
jans.v4i1.239
Agüero-Fernández, Y.M., Hernández-Montiel, L.G., Murillo-Amador, B.,
Nieto-Garibay, A., Troyo-Diéguez, E., Zulueta-Rodríguez, R. & Ojeda-
Silvera, C.M. (2018). Arbuscular mycorrhizal fungi alleviate salt stress
on sweet (Ocimum basilicum L.) seedlings. Tropical and Subtropical
Agroecosystems. 21, 387-398.
Ahanger, M.A., Abeer, H.E.F., Abd, A. & Ahmad, P. (2014). Arbuscular
mycorrhiza in crop improvement under environmental stress. In: Ahmad,
P. & Rasool, S. (Eds.). Emerging Technologies and Management of Crop
Stress Tolerance, 2, 69-95. https://doi.org/10.1016/B978-0-12-800875-
1.00003-X
Al-Karaki, G. (2000). Growth of mycorrhizal tomato and mineral acquisition
under salt stress. Mycorrhiza, 10, 51-54. https://doi.org/10.1007/
s005720000055
Al-Karaki, G.N., McMichael, B. & Zak. J. (2004). Field response of wheat to
arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263-
269. https://doi.org/10.1007/s00572-003-0265-2
Argentel, M.L., Fonseca, I., González, L.M. & López, D.R. (2012). Contenidos
de prolina, glicina betaína y proteínas solubles totales en 12 variedades
cubanas de trigo en condiciones salinas. Cultivos Tropicales, 31(4), 1-9.
Aroca, R., Ruiz-Lozano, J.M., Zamarreño, A.M., Paza, J.A., Garcia-Mina,
J.M., Pozo, M.J. & Lopez-Raeza, J.A. (2013). Arbuscular mycorrhizal
symbiosis inuences strigolactone production under salinity and
alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170,
47-55. https://doi.org/10.1016/j.jplph.2012.08.020
Bates, L., Waldren, R.P. & Teare, I.D. (1973). Rapid determination of free
proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.
org/10.1007/BF00018060
Batista-Sánchez, D., Murillo-Amador, B., Nieto-Garibay, A., Alcaráz-Meléndez,
L., Troyo-Diéguez, E., Hernández-Montiel, LG. & Ojeda-Silvera,
C.M. (2017). Mitigación de NaCl por efecto de un bioestimulante en la
germinación de Ocimum basilicum L. Terra Latinoamericana, 35 (4),
309-320.
Batista-Sánchez, D., Murillo-Amador, B., Nieto-Garibay, A., Alcaráz-Melendez,
L., Troyo-Diéguez, E., Hernández-Montiel, L.G., Ojeda-Silvera,
C.M., Mazón-Suástegui, J.M. & Agüero-Fernández, Y.M. (2019).
Bioestimulante derivado de caña de azúcar mitiga los efectos del estrés por
NaCl en
Ocimum basilicum L. Ecosistemas y Recursos Agropecuarios, 6
(17), 297-306. https://doi.org/10.19136/era.a6n17.2069
Cartmill, A.D., Valdez, A.L.A., Cartmill, D.L., Volder, A. & Alarcon, A. (2013).
Arbuscular mycorrhizal colonization does not alleviate sodium chloride-
salinity stress in vinca [Catharanthus Roseus (L.) G. Don]. Journal of
Plant Nutrition, 36 (1), 164-178. https://doi.org/10.1080/01904167.201
2.738275
Castellanos, J.Z., Uvalle, B.J.X. & Aguilar, S.A. (2000). Manual de interpretación
de análisis de suelo y agua. Universidad Autónoma de Chapingo. Estado
de México. pp. 94-97.
Chelli-Chaabouni, A., Ben Mosbah, A., Maalej, M., Gargouri, K., Gargouri-
Bouzid, R. & Drira, N. (2010). In vitro salinity tolerance of two pistachio
rootstocks: Pistacia vera L. and P. atlantica Desf. Environmental
and Experimental Botany 69, 302-312. https://doi.org/10.1016/j.
envexpbot.2010.05.010
Cheng, K.L. and Bray, R.H. (1951). Determination of calcium and magnesium in
soil and plant material. Soil Science, 72, 449-458.
Daniels, B.A. and Skipper, H.D. (1982). Methods for the recovery and quantitative
estimation of propagules from soil. In: Schenck, N.C. (Ed). Methods
and principles of mycorrhizal research. St. Paul, MN, The American
Phytopathological Society. pp. 29-36.
Feitosa de Lacerda, C., Cambraia, J., Oliva Cano, M.A. & Ruiz, H.A. (2001).
Plant growth and solute accumulation and distribution in two sorghum
genotypes under NaCl stress. Brazilian Journal of Plant Physiology, 13,
270-284.
Folhé, L. and Günzler, W.A. (1984). Assays for glutahione peroxidase. In: Parker,
L. (Ed.). Methods in enzymology, Vol. 105: Oxygen radicail in biological
systems. Academic Press Inc. San Diego, USA. 120 p. https://doi.
org/10.1016/S0076-6879(84)05015-1
García, E. (2004). Modicaciones al sistema de clasicación climática de Köppen.
Instituto de Geografía. Universidad Nacional Autónoma de México,
México. 98 p. http://www.librosoa.unam.mx/handle/123456789/1372
Gloria, M.M., Arias, L. & Rivera, R. (2010). Selección de las cepas de hongos
micorrízicos arbusculares (HMA) más efectivas para la Canavalia
ensiformis cultivada en suelo ferralítico rojo. Cultivos Tropicales, 31 (1),
27-31.
González, L.M., Argentel, L., Zaldívar, N. & Ramírez, R. (2005). Efecto de la
sequía simulada con PEG-6000 sobre la germinación y el crecimiento
de las plántulas de dos variedades de trigo. Cultivos Tropicales, 26 (4),
45-49.
Jackson, M.L. (1958). Soil Chemical analysis. Prentice-Hall, Inc., Englewood.
Cliffs, N.J. USA. pp. 66-81.
Jackson, M.L. (1976). Análisis Químico de Suelos. Ediciones Omega, S.A.,
Barcelona, España. pp. 283-301.
Juárez-Rosete, C.R., Aguilar-Castillo, J.A., Juárez-Rosete, M.E., Bugarín-
Montoya, R., Juárez-López, P. & Cruz-Crespo, E. (2013). Hierbas
aromáticas y medicinales en méxico: tradición e innovación. Revista
Bio Ciencias, 2 (3), 119-129. http://dspace.uan.mx:8080/jspui/
handle/123456789/731