This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Varapizuela-Sánchez et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239465-6 |
not enough to stimulate signicant changes. The maize coleoptiles
analyzed in this work that presented higher enzymatic activity and
greater gene expression were more resistant to infection, unlike those
that presented low enzymatic activity and gene expression, since
these changes can be affected by factors such as the environmental
ones, this is because some samples of the same race present different
susceptibility.
The resistance of plants to the stress generated by biotic or
abiotic conditions is a very important issue, since knowing better
the resistance mechanisms will help to improve the treatments to
which they are subjected to increase their quality and production.
Several detoxifying pathways are involved in this process, which are
comprised of many enzymes that are responsible for reducing and
cushioning the damage generated by cytotoxic compounds generated
by adverse growth conditions (Ghosh, 2017; Zhou et al., 2018).
Recent studies have shown that resistance to infection by A. avus in
maize is a trait controlled by multiple genes, however, the behavior of
these genes reported in hybrids is still unknown in native lines that are
considered a great source of genomic wealth and that have adapted to
different growth conditions such as temperature, altitude, humidity,
among others, prevailing from generation to generation (Rajasekaran
et al., 2019). It is important to know the natural response mechanisms
of plants to stress, to nd varieties that are resistant to unfavorable
growth conditions, minimizing production losses and contamination
of seeds by fungi and damage to the health of those who consume the
products.
Conclusions
Faced with the infection of Oaxacan maize coleoptiles by
Aspergillus avus, there was a decrease in total proteins and an
increase in the glyoxalase I response in both gene expression and
enzymatic activity in samples 1 and 5.
The high activity of the enzyme and expression of the gene
participate as a response to the infection of native maize, while low
concentrations of the enzyme and low expression to susceptibility.
However, the results should be analyzed with subsequent resistance
or susceptibility tests.
Literature cited
Álvarez-Gerding X., Cortés-Bullemore R., Medina C., Romero-Romero J. L.,
Inostroza-Blancheteau C., Aquea F. & Arce-Johnson P. (2015). Improved
salinity tolerance in Carrizo Citrange Rootstock through overexpression
of glyoxalase system genes. BioMed Research International, 827951.
https://doi.org/10.1155/2015/827951
Aragón C. F., Taba S, Hernández J. M., Figueroa J. D. & Serrano V. (2006).
Actualización de la información sobre los maíces criollos de Oaxaca.
Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias,
Informe nal SNIB-CONABIO proyecto No. CS002 México D. F. http://
www.conabio.gob.mx/institucion/proyectos/resultados/InfCS002.pdf
Arteaga M. C., Moreno-Letelier A., Mastretta-Yanes A., Vázquez-Lobo A.,
Breña-Ochoa A., Moreno-Estrada A., Eguiarte L. E. & Piñero D. (2016).
Genomic variation in recently collected maize landraces from Mexico.
Genomics Data, 7: 38-45. https://doi.org/10.1016/j.gdata.2015.11.002
Bandyopadhyay R., Ortega-Beltrán A., Akande A., Mutegi C., Atehnkeng J.,
Kaptoge L., Senghor A. L., Adhikari B. N. & Cotty P. J. (2016). Biological
control of aatoxins in Africa: current status and potential challenges in
the face of climate change. World Mycitoxin Journal, 9(5): 771-789.
https://doi.org/10.3920/WMJ2016.2130
Bania I. and Mahanta R. (2012). Evaluation of peroxidases from
various plant sources. International Journal of Scientic and
Research Publications, 2(5). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.387.3615&rep=rep1&type=pdf
Baker R. L., Brown R. L., Chen Z. Y., Cleveland T. E. & Fakhoury A. M.
(2009). A maize lectin-like protein with antifungal activity against
Aspergillus avus. Journal of food protection, 72(1): 120-127. https://doi.
org/10.4315/0362-028X-72.1.120
Ben M. R., El-Omari R., El-Mourabit N., Bouargalne Y. & NHIRI M. (2018).
Changes in the antioxidant and glyoxalase enzyme activities in leaves of
two Moroccan sorghum ecotypes with differential tolerance to nitrogen
stress. Australian Journal of Crop Science, 12(8): 1280-1287. https://
www.cropj.com/mrid_12_8_2018_1280_1287.pdf
Borysiuk K., Ostaszewska-Bugajska M., Vaultier M-N, Hasenfratz-Sauder M-P &
Szal B. (2018). Enhanced formation of methylglyoxal-derived advanced
glycation end products in Arabidopsis under Ammonium Nutrition.
Frontiers in Plant Science, 9: 667. https://doi.org/10.3389/fpls.2018.00667
Cabrera T. J. M., Carballo A. & Aragón-Cuevas F. (2015). Evaluación agronómica
de maíces raza Zapalote chico en la región Istmeña de Oaxaca. Revista
Mexicana Ciencias Agrícolas, 11: 2075-2082. https://doi.org/10.29312/
remexca.v0i11.775
Chen Z. Y., Brown R. L., Damann K. E. & Cleveland T. E. (2004). Identication
of a maize kernel stress-related protein and its effect on aatoxin
accumulation. Phytopathology, 94(9): 938-945. https://doi.org/10.1094/
PHYTO.2004.94.9.938
Chen, Z.-Y., Brown R. L., Damann K. E. & Cleveland T. E. (2007). Identication
of maize kernel endosperm proteins associated with resistance to aatoxin
contamination by Aspergillus avus. Phytopathology, 97(9): 1094–1103.
https://doi.org/10.1094/PHYTO-97-9-1094
Chomczynski P. and Sacchi N. (1987). Single-step method of RNA isolation
by acid guanidinium thiocyanate-phenol-chloroform extraction.
Analytical Biochemistry, 162(1):156-9. https://doi.org/10.1016/0003-
2697(87)90021-2
Fernández S. R., Morales L. A. & A. Gálvez M. (2013). Importancia de los maíces
nativos de México en la dieta nacional. Una revisión indispensable.
Revista Fitotecnia Mexicana, 36(3-A): 275-283. http://www.scielo.org.
mx/pdf/rfm/v36s3-a/v36s3-aa4.pdf
Fountain J. C., Chen Z-Y, Scully B. T., Kamerait R. C., Lee R. D. & Guo B. (2010).
Pathogenesis-related gene expressions in different maize genotypes
under drought stressed conditions. African Journal Plant Science, 4(11):
433-440. https://academicjournals.org/article/article1380126077_
Fountain%20et%20al.pdf
Ghosh A. (2017). Genome-wide identication of glyoxalase genes in Medicago
truncatula and their expression proling in response to various
developmental and environmental stimuli. Frontiers in Plant Science, 8:
836. https://doi.org/10.3389/fpls.2017.00836
Ghosh A., Kushwana H. R., Hasan M. R., Pareek A., Sopory S. K. & Singla-Pareek
S. L. (2016). Presence of unique glyoxalase III proteins in plants indicates
the existence of shorter route for methylglyoxal detoxication. Scientic
Reports, 6:18358. https://doi.org/10.1038/srep18358
Hasanuzzaman M., Nahar K., Hossain Md. S., Mahmud J. A., Rahman A., Inafuku
M., Oku H. & Fujita M. (2017a). Coordinated actions of glyoxalase and
antioxidant defense systems in conferring abiotic stress tolerance in
plants. International Journal Molecular Sciences, 18(1): 200. https://doi.
org/10.3390/ijms18010200
Hasanuzzaman M., Nahar K., Hossain Md. S., Anee T. I., Parvin K. & Fujita M.
(2017b). Nitric oxide pretreatment enhances antioxidant defense and
glyoxalase systems to confer PEG-induced oxidative stress in rapeseed.
Journal of Plant Interaction, 12(1): 323-331. https://doi.org/10.1080/17
429145.2017.1362052
Kato Y. T. A., Mapes C., Mera L. M., Serratos J. A. & Bye R. A. (2009). Origen y
diversicación del maíz; Una revisión analítica. UNAM: México: 115 pp.
https://issuu.com/perrasdelmal/docs/origen_y_diversif._del_maiz
Kaur C., Sharma S., Hasan M. R., Pareek A., Singla-Pareek S. L. & Sopory S.
K. (2017). Characteristic variations and similarities in biochemical,
molecular and functional Properties of glyoxalases across Prokaryotes and
Eukaryotes. International Journal of Molecular Sciences, 18:250. https://
doi.org/10.3390/ijms18040250
Li Z-G. (2016). Methylglyoxal and glyoxalase system in plants: old players, new
concepts. The Botanical Review, 82: 183-203. https://doi.org/10.1007/
s12229-016-9167-9
Rosado O. A. and Villasante S. B. (2021). Los herederos del maíz. Instituto
Nacional de los Pueblos Indígenas, Ciudad de México. https://www.gob.
mx/cms/uploads/attachment/le/658352/Libro-Los-herederos-del-maiz-
INPI.pdf
Martínez P. H. Y., Hernández S., Reyes C. A. & Vázquez-Carrillo G. (2013). El
género Aspergillus y sus micotoxinas de maíz en México: problemática y
perspectivas. Revista Mexicana de Fitopatología, 31(2): 126-146. http://
www.scielo.org.mx/pdf/rm/v31n2/v31n2a5.pdf
Orozco-Ramírez Q., Ross-Ibarra J., Santacruz-Varela A. & Brush S. (2016). Maize
diversity associated with social origin and environmental variation in
Southern Mexico. Heredity, 116(5): 477-484. https://doi.org/10.1038/
hdy.2016.10
Rajasekaran K., Sayler R. J., Majumdar R., Sickler C. M. & Cary J. W. (2019).
Inhibition of Aspergillus avus growth and aatoxin production in
transgenic maize expressing the α-amylase inhibitor from Lablab
purpureus L. Journal of Visualized Experiments, 144. https://doi.
org/10.3791/59169
Rohman Md. M., Talukder M. Z. A., Hossain M. G., Uddin M. S., Amiruzzaman
M., Biswas A., Ahsan A. F. M. & Chowdhury M. A. Z. (2016). Saline
sensitivity leads to oxidative stress and increases the antioxidants in