© The Authors, 2022, Published by the Universidad del Zulia*Corresponding author: jesus.olguin@correo.buap.mx
Keywords:
Trichilia havanensis
Plant extracts
Spider mite
Two-spotted spider mite
Corrected mortality
Evaluation of ovicidal activity of plant extracts on Tetranychus urticae Koch (Acari:
Tetranychidae)
Evaluación de actividad ovicida de extractos vegetales en Tetranychus urticae Koch (Acari:
Tetranychidae)
Avaliação da atividade ovicida de extratos vegetais em Tetranychus urticae Koch (Acari:
Tetranychidae)
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Maestría en Manejo Sostenible de Agroecosistemas,
Centro de Agroecología, Instituto de Ciencias, Benemérita
Universidad Autónoma de Puebla. Edicio VAL 1,
Ecocampus Valsequillo, San Pedro Zacachimalpa, Puebla,
72960 México.
2
Colegio de Postgraduados, Campus Tabasco. Periférico
Carlos A. Molina S/N, Cárdenas, Tabasco, C.P. 86500,
México.
3
Unidad de Protección de Cultivos, Departamento de
Agricultura y Alimentación, Universidad de La Rioja. C/
Madre de Dios No. 51, Logroño, 26006 España.
4
Herbario y Jardín Botánico, Vicerrectoría de Investigación
y Estudios de Posgrado, Benemérita Universidad Autónoma
de Puebla. Edicio JB1, Ciudad Universitaria, Puebla, 72570
México.
Received: 23-06-2022
Accepted: 08-08-2022
Published: 30-08-2022
Abstract
The ovicidal activity of ethanol and hexane extracts of Azadirachta
indica A. Juss., Trichilia havanensis Jacq., Roldana ehrenbergiana (Klatt)
H. Rob. & Brettell, Argemone mexicana L., Schinus molle L. y Gliricidia
sepium
(Jacq.) Kunth ex Walp. was evaluated in the laboratory on Tetranychus
urticae Koch (Acari: Tetranychidae). The extracts (treatments) were applied
by spraying at a concentration of 1,000 mg.L
-1
to a known number of eggs
(age <18h) on leaf discs of bean (Phaseolus vulgaris L.) (10 leaf discs per
treatment), and the percentage of egg mortality was recorded after six days
of the treatment. The corrected mortality (percentage) was obtained for each
test unit, and a simple ANOVA, followed by multiple comparison of means
by the Tukey method (α=0.05), were used to nd statistically signicant
differences between treatment effects. The ethanol and hexane extracts of
T. havanensis seeds caused an average corrected egg mortality of 77.7±3.5
and 58.0±3.4 %, respectively, which was signicantly higher than the egg
mortality caused by the other extracts. The ethanol extracts of the other
plant species caused a corrected egg mortality, which ranged from 8.8±9.6
to 42.9±8.3 %, while the corrected mortality of the hexane extracts ranged
from 0.2±2.3 to 30.1±4.0 %. The results show that the ethanol extract of T.
havanensis seeds has good potential for the development of products with
biological activity for the management of T. urticae.
Miriam M. Rodríguez-Cabrera
1
Betzabeth C. Pérez-Torres
1
Agustín Aragón-García
1
Carlos F
. Ortiz-García
2
Vicente S. Marco Mancebón
3
Jesús F. López-Olguín
1,4
*
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n3.11
Crop Production
Associate editor: Dra. Lilia Urdaneta
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945 July - September. ISSN 2477-9407.
2-6 |
Resumen
Se evaluó en laboratorio la actividad ovicida de extractos
etanólicos y hexánicos de Azadirachta indica A. Juss., Trichilia
havanensis Jacq., Roldana ehrenbergiana (Klatt) H. Rob. & Brettell,
Argemone mexicana L., Schinus molle L. y Gliricidia sepium
(Jacq.)
Kunth ex Walp. en Tetranychus urticae Koch (Acari: Tetranychidae).
Los extractos (tratamientos) se aplicaron por aspersión a una
concentración de 1.000 mg.L
-1
a un número conocido de huevos (edad
<18h) de T. urticae sobre discos foliares de frijol (Phaseolus vulgaris
L.) (10 discos foliares por tratamiento) y a los seis días se registró
el porcentaje de mortalidad de huevos. Se obtuvo la mortalidad
corregida (porcentaje) para cada unidad de ensayo y se aplicó un
ANOVA simple seguido de la comparación múltiple de medias por
el método de Tukey (α=0,05). Los extractos etanólico y hexánico de
semillas de T. havanensis ocasionaron mortalidad corregida de huevos
de 77,7±3,5 y 58,0±3,4 %, respectivamente. Los extractos etanólicos
de las otras especies vegetales ocasionaron mortalidad corregida
de huevos de 8,8±9,6 a 42,9±8,3 %, mientras que la mortalidad
corregida de los extractos hexánicos varió de 0,2±2,3 a 30,1±4,0 %.
Los resultados muestran que el extracto etanólico de semillas de T.
havanensis tiene buen potencial para el desarrollo de productos con
actividad biológica para el manejo de T. urticae.
Palabras clave: Trichilia havanensis, extractos de plantas, araña
roja, araña de dos manchas, mortalidad corregida.
Resumo
A atividade ovicida de extratos etanólicos e hexânicos de
Azadirachta indica A. Juss., Trichilia havanensis Jacq., Roldana
ehrenbergiana (Klatt) H. Rob. & Brettell, Argemone mexicana
L., Schinus molle L. y Gliricidia sepium
(Jacq.) Kunth ex Walp.
em Tetranychus urticae Koch (Acari: Tetranychidae) foi avaliada
em laboratório. Os extratos (tratamentos) foram aplicados por
pulverização na concentração de 1.000 mg.L
-1
em um número
conhecido de ovos (idade <18h) de T. urticae disponibilizados em
discos foliares de feijão (Phaseolus vulgaris L.) (10 discos foliares
por tratamento) e, após seis dias, a porcentagem de mortalidade
de ovos foi registrada. A mortalidade corrigida (porcentagem) foi
obtida para cada unidade de teste, que foi analisada estatisticamente
por meio de ANOVA simples, seguida de comparação múltipla de
médias pelo método de Tukey (α=0,05). Os extratos etanólicos e
hexânicos das sementes de T. havanensis causaram mortalidade
média corrigida de ovos de 77,7±3,5 e 58,0±3,4 %, respectivamente,
que foi signicativamente maior que a mortalidade de ovos dos
demais extratos. Os extratos etanólicos das demais espécies vegetais
causaram mortalidade corrigida de ovos de 8,8±9,6 a 42,9±8,3 %,
enquanto a mortalidade corrigida dos extratos hexânicos variou de
0,2±2,3 a 30,1±4,0 %. Os resultados mostram que o extrato etanólico
de sementes de T. havanensis apresenta bom potencial para o
desenvolvimento de produtos com atividade biológica para o manejo
de T. urticae.
Palavras-chave: Trichilia havanensis, extratos de plantas, aranha
vermelha, ácaro rajado, mortalidade corrigida.
Introduction
Tetranychus urticae Koch (Acari: Tetranychidae), commonly
called “two-spotted spider” or “red spider”, has a wide worldwide
distribution, is one of the main pests in agriculture and affects more
than 1200 species of host plants; among them, fruit trees, oilseeds,
vegetables, ornamental and medicinal plants, and more than 150
plants of economic importance in Mexico (Souza-Pimentel et
al., 2016). It causes damage to plants by feeding on the content of
epidermal and parenchymal cells of stems and leaves; reducing its
efciency, as well as the yields and quality of the crops (León et al.,
2014). For its control, synthetic acaricidal chemical products are used
that affect the health of agricultural workers and consumers, have a
negative impact on the environment and have caused toxicological
problems and the development of resistance to acaricides (Cerna et
al., 2009; Villegas-Elizalde et al., 2010).
Faced with this problem, it is necessary to develop alternative
strategies to the use of synthetic chemical products for crop protection,
with the possibility of being incorporated into agroecological pest
management, where priority is given to cultural, biological strategies
and the use of extracts or vegetable oils, among others (Altieri and
Nicholls, 2018). Plants produce secondary metabolites that help
them defend themselves against herbivores (Sierra et al., 2018).
These biomolecules affect the physiology, growth and development
of insects and mites, since they act as growth regulators, feeding
inhibitors, repellents, oviposition inhibitors, molt inhibitors and
chitin formation (Erdogan and Sever, 2017). These plant properties
have been evaluated in insects, mites (Souza de Jesus et al., 2020),
nematodes (Sepúlveda-Vázquez et al., 2018) and bacteria (Cuervo et
al., 2019). However, no references to studies on the ovicidal effect
of Azadirachta indica A. Juss (Meliaceae) “nim” extracts were
found, Trichilia havanensis Jacq. (Meliaceae) “jar branch”, Roldana
ehrenbergiana (Klatt.) H. Robinson & Brettell. (Asteraceae) “dog
grass”, Argemone mexicana L. (Papaveraceae) “Chicalote”, Schinus
molle L. (Anacardiaceae) “Pirul” and Gliricidia sepium (Jacq.) Kunth
ex Walp. (Fabaceae) “Cocuite” or “Mata rata” in T. urticae.
Therefore, the objective of this work was to evaluate the effect of
ethanolic and hexanic extracts of the plant species mentioned above,
on the viability of T. urticae eggs.
Materials and methods
Obtaining plant extracts
To obtain the extracts, G. sepium bark collected in Zolonquiapa,
Izúcar de Matamoros, Puebla was used; stems, leaves, owers
and fruits of A. mexicana, and leaves of S. molle from San Pedro
Zacachimalpa, Puebla; seeds of T. havanensis from Cuetzalan del
Progreso, Puebla; seeds of A. indica from Acayucan, Veracruz and
stems, leaves, owers and fruits of R. enrenbergiana
from Santa Cruz
Alpuyeca, Puebla. The plant material was left to dry in the shade at
room temperature (18 ± 5 °C) for 20 days and was crushed in an
industrial blender (PDH
®
industrial 5 L stainless steel 1 HP PD14)
until obtaining homogeneous particles that were passed through
a sieve (Mont-Inox
®
) No. 16 with 1 mm opening. The powdered
material was placed in duly labeled brown paper bags and stored in a
dry place for later use.
The extracts were obtained by the Soxhlet extraction method
(Sierra et al., 2018), based on 100 to 180 g of powdered plant
material (depending on availability) and 800 mL of 96 % ethanol
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rodríguez-Cabrera et al. Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945
3-6 |
(Merck Emsure
®
Reag Ph Eur) or hexane (Merck Emsure
®
ACS).
The extracts were concentrated in a rotary evaporator (Sev
®
A402-
2) at 200 rpm at constant temperature (<40 °C) and stored in amber
glass bottles at 4 °C. The ethanolic extracts of T. havanensis and A.
indica seeds presented two phases that were separated in a centrifuge
(Hermle
®
Z326K) at 6000 rpm for 5 minutes, obtaining a supernatant
of oily consistency and a precipitate, which were preserved and
evaluated separately.
Breeding of T. urticae
Adults present in damaged leaves (chlorotic spots and presence of
cobwebs) of bean (Phaseolus vulgaris L.), rose (Rosa spp.), tomato
(Solanum lycopersicum L.) and sweet cucumber (Solanum muricatum
Aiton) crops were collected without treatment of insecticides and/or
acaricides in the municipalities of Atlixco and Tepeojuma, Puebla,
Mexico. The plant material with the mites was placed in duly labeled
polypropylene containers, which were transferred to the Laboratorio
de Manejo Agroecológico de Plagas, Centro de Agroecología,
Instituto de Ciencias of the Benemérita Universidad Autónoma de
Puebla, where the species was conrmed with the help of keys and
verication of the taxonomic characteristics of T. urticae (Ferragut
and Santonja, 1989). The colonies were established under controlled
conditions of temperature (26 ± 1 °C), relative humidity (50 ± 5 %)
and photoperiod (12:12 h Light: Darkness), on bean plants (Phaseolus
vulgaris L.) contained in acrylic transparent boxes 30x47x20 cm
(high, long and wide, respectively), covered with tricot fabric, from
which the adults necessary for the development of the bioassays were
obtained.
Bioassays
The bioassays were carried out in the laboratorio de Manejo
Agroecológico de Plagas, Centro de Agroecología, Instituto de
Ciencias of the Benemérita Universidad Autónoma de Puebla,
México.
The experimental unit consisted of a bean leaf disc of 2 cm in
diameter with a certain number of eggs depending on the laying of
two females of T. urticae that had been placed in it, for a period of
18 h, as indicated next. The leaf disc was placed in a 60x15 mm Petri
dish with the bottom covered with two layers of lter paper moistened
to saturation with distilled water. Leaf disc turgidity was maintained
by placing the Petri dish inside an 8x9 cm polypropylene container
with distilled water in the bottom. A piece of absorbent cloth was used
that was attached to the Petri dish with a clip to maintain the ow of
water between the lter paper of the Petri dish and the water reservoir
of the polypropylene container.
Leaf discs were obtained from bean plants grown in pots arranged
in a greenhouse. Using a camel hair brush and a stereoscopic
microscope (Zeigen
®
), 5 adults (2 females and 3 males) of T. urticae
were placed on the underside of each leaf disc. Females were allowed
to oviposit for a period of 18 hours to obtain as many eggs as possible
on each disk. After this time, the adults were removed, the eggs laid
on each disc were counted and the treatments (plant extracts) were
applied at a concentration of 1,000 mg.L
-1
, using 10 foliar discs
containing between 8 and 20 eggs each. The average number of eggs
per leaf disc in the trials was 9.4 with a standard deviation of 2.5 eggs.
To obtain the ethanolic extracts at a concentration of 1,000
mg.L
-1
, 25 mg of the extract were weighed on an analytical balance
(Ohaus
®
PX124 Pioneer
TM
) and 25 mL of ethanol were added. The
extract with the solvent was placed in a 50 mL rigid polypropylene
container, which was passed through a laboratory shaker (Sunburst
®
)
for 10 minutes to obtain a homogeneous mixture. The mixture was
transferred to a manual sprayer for subsequent application to the test
units. The treatments consisted of the seven plant ethanolic extracts
and two controls (distilled water and ethanol alone).
Hexanic extracts at a concentration of 1,000 mg.L
-1
were obtained
by combining 25 mg of each extract, 25 mL of distilled water and
25 μL of Surfatol+6
®
(30 % polyoxyethylene tridecyl alcohol + 20
% phosphoric acid + diluents and conditioners 49 % + fulvic acid 1
%) as adjuvant. Hexane was not used to dissolve the plant extracts
because a preliminary test showed toxicity of this product on T.
urticae eggs, so it was decided to use distilled water and surfatol+6
®
.
This product allowed an adequate mixture of the hexanic extracts of
oily consistency with the distilled water. Each of the containers was
placed in an ultrasound tub (Hantec
®
HNT-UL188) for 30 minutes
at high intensity and then placed in a shaker-vibrator (JT-14
®
) for
10 minutes to obtain a homogeneous mixture. Finally, the mixture
of each extract was transferred to a manual sprayer for subsequent
application to the test units. The treatments consisted of the six plant
hexanic extracts and the controls consisting of surfatol+6
®
(to rule out
a possible effect of this product) and distilled water.
The treatments were applied to the test units (leaf discs with T.
urticae eggs) by spraying approximately one mL of each solution
with the help of a manual atomizer with a capacity of 75 mL and they
were standardized at a distance of 10 cm from the outlet of the spray
to the leaf disc, with a ne droplet size to ensure a homogeneous
spray on the surface of the leaf disc with the T. urticae eggs. The
treated discs were left to dry at room temperature for 5 minutes on
a laboratory table and once dry, they were placed according to the
completely randomized design (Infante and Zárate de Lara, 1990) in
the insect breeding room, where the conditions of temperature (26 ±
1 °C), relative humidity (50 ± 5%) and photoperiod of 12:12 h (L: O)
they were controlled. Six days after the application of the treatments,
the number of dead eggs was recorded and later, for each test unit,
the percentage of egg mortality and the corrected mortality (%) were
obtained according to Abbott (1925), considering that the average
mortality of the control treatments in the bioassays was between 5
and 10 %.
Statistical analysis
To rule out a possible effect of the solvents water and ethanol, and
the adjuvant Surfatol+6
®
, t-Student tests (α = 0.05) were performed,
where the mean mortality of the control treatments consisting of the
application of distilled water versus ethanol and the mean mortality of
the control (without solvent) versus the water plus surfatol+6
®
control.
The corrected mortality data were processed by means of a one-way
analysis of variance (simple ANOVA), after verifying the assumption
of homogeneity of variances by the Bartlett method, followed by the
multiple comparison test of means by the Tukey method (α = 0.05)
(Infante and Zárate de Lara, 1990). Statistical calculations and
analyzes were performed with the statistical package Statgraphics
Centurion version XVI.I (StatPoint Technologies, Inc., 2009).
Results and discussion
Ovicidal activity of ethanolic extracts
The mean egg mortality of the control treatments (water and
ethanol) did not present a statistically signicant difference (P>0.05),
so they were averaged to consider a single control for the calculation
of corrected mortality. The average mortality percentage was 7.9,
which corresponds to the average mortality of the negative control
(leaf discs not treated with plant extract).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945 July - September. ISSN 2477-9407.
4-6 |
The ethanolic extracts of T. havanensis seeds, precipitate and
supernatant, were the ones that showed the highest ovicidal activity
in T. urticae, with average corrected mortality of eggs of 60.0 and
77.7 %, respectively. The difference between these mortality means
was not statistically signicant (table 1).
Table 1. Mean mortality (M) and corrected mortality (CM) of
Tetranychus urticae eggs treated with ethanolic plant
extracts.
Vegetable species
M ± SE* (%) CM ± SE* (%)
Trichilia havanensis
(seeds) supernatant
79.5 ± 03.4 77.7 ± 03.5
a**
Trichilia havanensis
(seeds) precipitated
63.2 ± 04.9 60.0 ± 05.1
ab
47.4 ± 07.9 42.9 ± 08.3
bc
44.1 ± 08.2 39.3 ± 08.6
bc
5.0 ± 11.9 29.4 ± 12.1
cd
33.4 ± 05.1 27.7 ± 05.3
cd
31.3 ± 05.9 25.4 ± 06.1
cd
16.0 ± 09.1 8.8 ± 09.6
d
Argemone mexicana
(aerial part)
Azadirachta indica
(seeds) supernatant
Roldana ehrenbergiana
(aerial part)
Gliricidia sepium
(cortex)
Azadirachta indica
(seeds) precipitated
Schinus molle
(foliage)
Negative control
(without vegetable extract)
7.9 ± 02.4
*SE= Standard error.
**Corrected mortality means (CM) followed by the same letter are not
signicantly different from each other (Tukey’s HSD test, P>0.05).
The corrected mortality means of the ethanolic extracts of A.
mexicana, R. ehrenbergiana, G. sepium, A. indica supernatant
and A. indica precipitate were signicantly higher than the mean
mortality of the control treatment (P<0.05) with values from 25.4
to 42.9 %, showing no statistically signicant difference between
them. While the ethanolic extract of S. molle caused corrected
mortality of eggs that does not differ statistically from the mortality
of the control.
Ovicidal activity of hexanic extracts
No signicant difference was observed between the corrected
mortality means of white control eggs (untreated leaf discs) and
the application of distilled water plus surfatol+6
®
; with a general
average of 5.7 %; therefore, the repetitions of both controls were
considered for the calculation of corrected mortality.
Table 2 shows the corrected mortality means and the result of
the multiple comparison of means, where the hexanic extract of T.
havanensis seeds caused the highest activity with 58.0 % corrected
mortality of eggs.
The hexanic extracts of A. mexicana, G. sepium and A. indica
also caused corrected mortality signicantly higher than the
mortality of the control treatment, with no signicant difference
between their mortality means. This group of extracts presented
low ovicidal activity in T. urticae with corrected mortality averages
between 17.6 and 30.1 % while the hexanic extract of S. molle did
not cause signicant ovicidal activity.
Table 2. Mean mortality (M) and corrected mortality (CM) of
Tetranychus urticae eggs treated with hexanic plant
extracts.
Vegetable species
M ± SE* (%) CM ± SE* (%)
Trichilia havanensis
(seeds)
60.4 ± 3.2 58.0 ± 3.4
a**
Azadirachta indica
(seeds)
34.1 ± 3.8 30.1 ± 4.0
b
Gliricidia sepium
(cortex)
22.5 ± 3.2 17.8 ± 3.4
bc
Argemone mexicana
(aerial part)
22.3 ± 2.1 17.6 ± 2.2
bc
Roldana ehrenbergiana
(aerial part)
17.6 ± 3.2 12.6 ± 3.5
c
Schinus molle
(foliage)
5.9 ± 2.2 0.2 ± 2.3
d
Negative control
(without vegetable extract)
5.7 ± 1.9
*SE= Standard error.
**Corrected mortality means (CM) followed by the same letter are not
signicantly different from each other (Tukey’s HSD test, P>0.05).
According to Castiglioni et al. (2002) and Vieira et al. (2014),
plants of the genus Trichilia biosynthesize limonoids, terpenes,
diterpernes, triterpenes, coumarins and avonoids, with a potential
pesticidal effect. Its biological activity has been evaluated in
different pest species, such as in larvae of Spodoptera littoralis
(Boisduval) (López-Olguín et al., 1997), larvae of Spodoptera
litura (Fabricius) (Wheeler and Isman, 2000), adults of T. urticae
(Castiglioni et al., 2002), eggs of Ceratitis capitata (Wied.) (López-
Olguín et al., 2002), larvae of Spodoptera exigua (Hübner) (De la
Torre-Anzures et al., 2017) and larvae and adults of Copitarsia
decolora (Guenée) (García-Gómez et al., 2018).
De la Torre-Anzures et al. (2017) observed mortality of neonatal
larvae of S. exigua from the concentration of 100 mg.L
-1
of an
acetone extract of T. havanensis seeds in solid state (resin) and the
supernatant oil, with mortality of 75 % at a concentration of 10,000
mg.L
-1
, while García-Gómez et al. (2018) evaluated the effect of the
hexanic extract from the bark of T. havanensis on larvae, pupae and
accumulated mortality of C. decolora and observed that it presents
toxicity in larvae from a concentration of 1,000 mg.L
-1
, with a
mortality of 48 % in larvae and 16 % in pupae, having a cumulative
mortality of 64 %. This activity is attributed to limonoids with a
furan ring that are known to have antifeedant, repellent, toxic and
physiological effects on insects (Ortego et al., 1999, Vieira et al.,
2014). According to Isman (2000), the acaricidal activity of plant
extracts is due to the presence of various chemical compounds with
more than one mode of action.
The ethanolic extract of A. mexicana caused 42.9 % corrected
mortality of T. urticae eggs. While Carrillo-Rodríguez et al. (2011)
recorded with this same extract corrected mortality of adults of
T. urticae greater than 50 %. These results are similar to those
obtained in this research in terms of biological activity; however,
higher mortality was observed in adults than the mortality of
T. urticae eggs obtained in this work, which could be due to the
different concentration of the extracts evaluated in these studies or
to the different susceptibility of the different stages of development.
Granados-Echegoyen et al. (2019) reported that the insecticidal
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rodríguez-Cabrera et al. Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945
5-6 |
activity of A. mexicana could be due to the alkaloids, anthraquinones,
avonoids and terpenoids found in the crude extracts of different
parts of the plant.
A. indica extracts have been extensively studied for their
insecticidal effect. Encina Romero et al. (2011) found that the
aqueous extract of neem leaves at 1 % caused a mortality of 37.8 %
at 72 h after exposure in adult mites of the genus Tetranychus. This
mortality was similar to the corrected mortality of eggs obtained in
this investigation (39.3 %) with the supernatant ethanolic extract of
neem seeds at a concentration ten times lower. The difference could
be due to a greater susceptibility of the eggs to the activity of the
extracts and a higher concentration of active compounds in the seeds,
compared to the neem leaves.
On the other hand, the hexanic extract of A. indica seeds showed
moderate ovicidal activity with corrected mortality of T. urticae eggs
of 30 %. In other arthropods, neem has been shown to have similar
biological activity, as observed by Barrientos et al. (2018), who found
that the hexanic extract of A. indica seeds caused a mortality of 47.9,
37.5 and 27.1 % of the Meccus pallidipennis (Stal) bug nymphs
because of topical application of concentrations of 80, 60 and 30
% of the extract, respectively. The main biomolecule of A. indica is
azadirachtin, which affects the physiology and life cycle of organisms
(Esparza-Díaz et al., 2010).
No references to studies on the biological activity of ethanolic and
hexanic extracts of G. sepium and R. ehrenbergiana on phytophagous
mites were found; however, its effects have been evaluated on other
pest organisms. Martin de la Guardia et al. (2003) observed that the
ethanolic extract of G. sepium has antifeedant activity of 40 % in
larvae of Pieris phileta (Fabricius) and Plutella xylostrella (L.). In
this work, the ethanolic extract of G. sepium bark caused 27.7 % of
corrected mortality of T. urticae eggs, while the hexane extract of G.
sepium showed a corrected mortality of 17.8 % of eggs. Santacoloma
and Granados (2012), suggest that the activity of G. sepium is due to
the coumarins, tannins, lignins, phenols and saponins that it contains
in leaves and stems.
In this study, the ethanolic extract of aerial parts of R.
ehrenbergiana caused corrected mortality of T. urticae eggs of 29.4
%. No information was found on the activity of extracts of this plant
in mites, but the ethanolic extract of the root, at concentrations of 10
and 20 %, caused mortality of 83 % and 99 %, respectively, in larvae
of Culex quinquefasciatus (Say) (García, 2009). The discrepancy
could be due to the species treated or the plant tissue used and the
concentrations tested.
The ethanolic and hexanic extracts of S. molle were the ones that
presented the lowest biological activity in T. urticae
eggs with values
of 8.8 % and 0 % corrected mortality, respectively. Topuz et al. (2018)
also did not observed an effect of an essential oil from S. molle leaves
applied as a fumigant on T. urticae eggs.
Conclusion
The seed extracts of T. havanensis, especially the ethanolic ones,
have potential for the development of products for the management of
T. urticae, and thus, to contribute to the agroecological management
of crops. The extracts of the other plants did not show ovicidal activity
with potential for the management of T. urticae.
Acnowledgement
The authors thank to Consejo Nacional de Ciencia y Tecnología
of México, for the support granted to the rst author through a
scholarship to study for a masters degree in science.
Literature cited
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide.
Journal of Economic Entomology, 18(2), 265-267. https://doi.
org/10.1093/jee/18.2.265a
Altieri, M., and Nicholls, C. (2018). Agroecología: Ciencia fundamental para el
diseño de ncas resilientes a plagas. LEISA Revista de Agroecología,
34(1), 5-8. https://www.leisa-al.org/web/index.php/volumen-34-numero-
1/3219-agroecologia-ciencia-fundamental-para-el-diseno-de-fincas-
resilientes-a-plagas
Barrientos, G., Rodríguez, C., Zumaquero, L., López-Olguín, J. F., Huerta, A.,
& Romero, J. (2018). Efecto de extractos de semillas de Azadirachtina
indica aplicado a Meccus pallidipennis (Stal) en condiciones de
laboratorio. Southwestern Entomologist, 43(2), 465-474. https://doi.
org/10.3958/059.043.0218
Carrillo-Rodríguez, J., Hernández-Cruz, B., Chávez-Servia, J., Vera-Guzmán,
A., & Perales-Segovia, C. (2011). Efecto de extractos vegetales sobre
la mortalidad de Tetranychus urticae Koch (Acari: Tetranychidae), en
laboratorio. Journal of the Interamerican Society for Tropical Horticulture,
53, 154-157. https://www.researchgate.net/publication/234112906_
Efecto_de_extractos_vegetales_sobre_la_mortalidad_de_Tetranychus_
urticae_Koch_Acari_Tetranychidae_en_laboratorio
Castiglioni, E., Vendramim, J. D., & Tamai, M. A. (2002). Evaluación del efecto
tóxico de extractos acuosos y derivados de meliáceas sobre Tetranychus
urticae (Koch) (Acari: Tetranychidae). Agrociencia (Uruguay), 6(2), 75-
82. http://fagro2.fagro.edu.uy/agrociencia/index.php/directorio/article/
view/549
Cerna, E., Landeros, J., Ochoa, Y., Luna, J., Vázquez, O., & Ventura, O. (2009).
Tolerancia del ácaro Tetranychus urticae Koch a cuatro acaricidas de
diferente grupo toxicológico. Investigación y Ciencia, 17(44), 4-10.
https://www.redalyc.org/articulo.oa?id=67411476002
Cuervo, D., Vanegas, J., Corzo, D., & Correa, F. (2019). Evaluación de la
capacidad bactericida de extractos vegetales de distinta polaridad de
Drimys granadensis. Revista Peruana de Biología, 26(1), 135-142. http://
dx.doi.org/10.15381/rpb.v26i1.15917
De la Torre-Anzures, J., Aragón-García, A., Pérez-Torres, B., & López-Olguín, J.
(2017). Biological activity of a seed extract of Trichilia havanensis Jacq.
against Spodoptera exigua (Hubner) larvae. Southwestern Entomologist,
42(4), 1069-1078. http://www.bioone.org/doi/full/10.3958/059.042.0401
Encina Romero, R. L., Ramírez de López, M. B., & Pino Quintana, C. D. (2011).
Efecto de dos extractos acuosos de meliáceas sobre Tetranychus spp.
(Acari: Tetranychidae) en condiciones de laboratorio. Investigación
Agraria
, 13(2), 95-100. https://www.agr.una.py/revista/index.php/ria/
article/view/221
Erdogan, P., and Sever, Y. B. (2017). Acaricidal activity of extracts of Juglans
regia L. on Tetranychus urticae
Koch (Acari: Tetranychidae). Journal
of Food Science and Engineering
, 7(4), 202-208. doi: https://doi.
org/10.17265/2159-5828/2017.04.004
Esparza-Díaz, G., López-Collado, J., Villanueva-Jiménez, J. A., Osorio-Acosta,
F., Otero-Colina, G., & Camacho-Díaz, E. (2010). Concentración de
azadiractina, efectividad insecticida y totoxicidad de cuatro extractos
de Azadirachta indica A. Juss. Agrociencia, 44(7), 821-833. https://
agrociencia-colpos.mx/index.php/agrociencia/article/view/842/842
Ferragut, F., and Santonja, M. C. (1989). Taxonomía y distribución de los
ácaros del género Tetranychus Dufour 1832 (Acari: Tetranychidae),
en España. Boletín de Sanidad Vegetal Plagas, 15(3), 271-281.
https://www.mapa.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_
plagas%2FBSVP-15-03-271-281.pdf
García, G. (2009). Potencial insecticida de Roldana ehrenbergiana (Klatt) H.
Rob. & Brettel y Asclepias notha W. D. Stevens en larvas de Culex
quinquefasciatus Say [Tesis de Maestría. Colegio de Postgraduados.
México]. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/1649
García-Gómez, A., Figueroa-Brito, R., Serrano, L., & Jiménez-Pérez, A. (2018).
Trichilia (Meliaceae) plants: an important source of biomolecules with
insecticidal properties. Florida Entomologist, 101(3), 470-479. https://
doi.org/10.1653/024.101.0305
Granados-Echegoyen, C., Chan-Bacab, M., Ortega-Morales, B., Vasquez-
Lopez, A., Lagunez-Rivera, L., Diego-Nava, F., & Gaylarde, C. (2019).
Argemone mexicana (Papaverales: Papavaraceae) as an alternative for
mosquito control: rst report of larvicidal activity of ower extract.
Journal of Medical Entomology, 56(1), 261-267. https://doi.org/10.1093/
jme/tjy159
Infante, G. S., and Zárate de Lara, G. P. 1990. Métodos estadísticos: un enfoque
interdisciplinario. 2ª edición. Editorial Trillas. México. No disponible en
línea.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223945. July - September. ISSN 2477-9407.
6-6 |
Isman, M. B. (2000). Plant essential oils for pest and disease management.
Crop Protection, 19(8-10), 603-608. https://doi.org/10.1016/S0261-
2194(00)00079-X
León, L. L., Guzmán-Ortíz, D. L. A., García, B. J. A., Chávez, M. C. G., & Peña-
Cabriales, J. J. (2014). Consideraciones para mejorar la competitividad de
la región “El Bajío” en la producción nacional de fresa. Revista Mexicana
de Ciencias Agrícolas
, 5(4), 673-686. https://doi.org/10.29312/remexca.
v5i4.929
López-Olguín, J. F, Adán, A., Ould-Abdallahi, E., Budia, F., Del Estal, P., &
Viñuela, E. (2002). Actividad de Trichilia havanensis Jacq. (Meliaceae)
en la mosca mediterránea de la fruta Ceratitis capitata (Wied.) (Diptera:
Tephritidae). Boletín de Sanidad Vegetal Plagas, 28(2), 299-306.
https://www.mapa.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_
plagas%2FBSVP-28-02-299-306.pdf
López-Olguín, J. F., Budia, F., Castañera P., & Viñuela E. (1997). Actividad de
Trichillia havanesis Jacq. (Meliaceae) sobre las larvas de Spodoptera
litoralis (Boisduval) (Lepidóptera: Noctuidae). Boletín de Sanidad
Vegetal Plagas, 23(1), 3-10. https://www.mapa.gob.es/ministerio/pags/
Biblioteca/Revistas/pdf_plagas%2FBSVP-23-01-003-010.pdf
Martín de la Guardia, A., González Morera, T. A., Marrero Terrero, A. A.,
Milián Hernández, V., Campaña Castellanos, H., & Iglesias Rodríguez,
G. (2003). Obtención de un extracto plaguicida de Gliricidia sepium
(Jaq.) Steud bajo la irradiación con microondas. Revista Cubana de
Plantas Medicinales, 8(3). http://scielo.sld.cu/scielo.php?script=sci_
arttext&pid=S1028-47962003000300010&lang=es
Ortego, F., López-Olguín, J., Ruiz, M., & Castanera, P. (1999). Effects of toxic
and deterrent terpenoids on digestive protease and detoxication enzyme
activities of Colorado potato beetle larvae. Pesticide Biochemistry and
Physiology,
63(2), 76-84. https://doi.org/10.1006/pest.1998.2386
Santacoloma Varón, L. E., and Granados, J. E. (2012). Interrelación entre el
contenido de metabolitos secundarios de las especies Gliricidia sepium
y Tithonia diversifolia y algunas propiedades físicoquímicas del
suelo. Revista de Investigación Agraria y Ambiental, 3(1), 53-62. https://
doi.org/10.22490/21456453.934
Sepúlveda-Vázquez, J., Torres-Acosta, J. F., Sandoval-Castro, C. A., Martínez-
Puc, J. F., & Chan-Pérez, J. I. (2018). La importancia de los metabolitos
secundarios en el control de nematodos gastrointestinales en ovinos con
énfasis en Yucatán, México. Journal of the Selva Andina Animal Science,
5(2), 79-95. http://ucbconocimiento.ucbcba.edu.bo/index.php/JSAAS/
article/view/70/45
Sierra, M., Barros, R., Gómez, D., Mejía, A., & Suarez, D. (2018). Productos
naturales: metabolitos secundarios y aceites esenciales. Fundación
Universitaria Agraria de Colombia-UNIAGRARIA, Colombia. https://
www.researchgate.net/publication/334656228_PRODUCTOS_
NATURALES_METABOLITOS_SECUNDARIOS_Y_ACEITES_
ESENCIALES
Souza de Jesus, A., Guedes de Sena Filho, J., Rabelo Coelho, C., Vieira Teodoro, A.,
Cruz da Silva, A. V., & Viteri Jumbo, L. (2020). Bioactividad de iridoides
de Genipa americana contra el ácaro del cocotero Aceria guerreronis
Keifer (Acari: Eriophyidae). Revista de Protección Vegetal, 35(1). http://
revistas.censa.edu.cu/index.php/RPV/article/view/1079
Souza-Pimentel, G. C., Reis, P. R., Bonatto, C. R., Alves, J. P., & Siqueira, M.
F. (2016). Reproductive parameters of Phytoseiulus macropilis (Banks)
fed with Tetranychus urticae koch (Acari: Phytoseiidae, Tetranychidae)
in laboratory. Brazilian Journal of Biology, 77(1), 162-169. https://doi.
org/10.1590/1519-6984.13115
StatPoint Technologies, Inc. (2009). STATGRAPHICS
®
Centurion XVI User
Manual. https://cdn2.hubspot.net/hubfs/402067/PDFs/user-manual.pdf
Topuz, E., Madanlar, N., & Erler, F. (2018). Chemical composition, toxic and
development-and reproduction-inhibiting effects of some essential
oils against Tetranychus urticae Koch (Acarina: Tetranychidae) as
fumigants. Journal of Plant Diseases and Protection, 125(4), 377-387.
https://doi.org/10.1007/s41348-018-0161-9
Vieira, I. J. C., da Silva Terra, W., dos Santos Gonçalves, M., & Braz-Filho, R.
(2014). Secondary metabolites of the genus Trichilia: contribution to
the chemistry of Meliaceae family. American Journal of Analytical
Chemistry, 5(2), 91-121. https://doi.org/10.4236/ajac.2014.52014
Villegas-Elizalde, S. E., Rodríguez-Maciel, J. C., Anaya-Rosales, S., Sánchez-
Arroyo, H., Hernández-Morales, J., & Bujanos-Muñiz, R. (2010).
Resistencia a acaricidas en Tetranychus urticae (Koch) asociada al
cultivo de fresa en Zamora, Michoacán, México. Agrociencia, 44(1),
75-81. https://agrociencia-colpos.mx/index.php/ agrociencia/article/
view/777/777
Wheeler, D., and Isman, M. (2000). Effect of Trichilia americana extract on feeding
behavior of Asian armyworm, Spodoptera litura
. Journal of Chemical
Ecology,
26(12), 2791-2800. https://doi-org.10.1023/A:1026441910784