This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223940. July - September. ISSN 2477-9407.
6-6 |
Literature cited
Abdelaal, K.A.A., Attia, K.A., Alamery, S.F., El-Afry, M.M., Ghazy, A.I.,
Tantawy, D.S., & Hafez, Y.M. (2020). Exogenous application of proline
and salicylic acid can mitigate the injurious impacts of drought stress on
barley plants associated with physiological and histological characters.
Sustainability, 12:1-15. http://dx.doi.org/10.3390/su12051736
Afshari, F., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2022). Physiological
and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming
and foliar nutrition under water supply restrictions. Industrial Crops and
Products, 176: 114399. https://doi.org/10.1016/j.indcrop.2021.114399
Barba de la Rosa, A.P., Gueguen, J., Paredes-López, O., & Viroben, G. (1992).
Fractionation procedures, electrophoretic characterization, and amino
acid composition of amaranth seed proteins. Journal of Agricultural and
Food Chemistry, 40:931-936. https://doi.org/10.1021/jf00018a002
Bates, L.S., Waldren, R.P., Teare, I.D., Bates, L.S., Waldern, R.P., & Teare, I.
(1973). Rapid determination of free proline for water-stress studies. Plant
Soil, 39:205-207. https://doi.org/10.1007/BF00018060
Chaimala, A., Jogloy, S., Vorasoot, N., Holbrook, C.C., Kvien, C.K., &
Laohasiriwong, S. (2021). The variation of relative water content, SPAD
chlorophyll meter reading, stomatal conductance, leaf area, and specic
leaf area of Jerusalem artichoke genotypes under different durations
of terminal drought in tropical region. Journal of Agronomy and Crop
Science, 00:1-15. https://doi.org/10.1111/jac.12561
Dianat, M., Saharkhiz, M.J., & Tavassolian, I. (2016). Salicylic acid mitigates
drought stress in Lippia citriodora L.: Effects on biochemical traits and
essential oil yield. Biocatalysis and Agricultural Biotechnology, 8:286-
293. https://doi.org/10.1016/j.bcab.2016.10.010
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F. (1956).
Colorimetric method for determination of sugars and related substances.
Analytical Chemistry, 28:350-356. https://doi.org/10.1021/ac60111a017
Elhakem, A.H. (2019). Impact of salicylic acid application on growth,
photosynthetic pigments and organic osmolytes response in Mentha
arvensis under drought stress. Journal of Biological Sciences, 19:372-
380. https://doi.org/10.3923/jbs.2019.372.380
FAO. (2015). Base referencial mundial del recurso suelo. Organización de la
Naciones Unidas para la Alimentación y la Agricultura (FAO). Rome,
Italy. https://www.fao.org/soils-portal/soil-survey/clasicacion-de-suelos/
base-referencial-mundial/es/
Farouk, S., Arafa, S.A., & Nassar, R.M.A. (2018). Improving drought tolerance in
corn (Zea mays L.) by foliar application with salicylic acid. International
Journal of Environment, 7:104-123. http://www.curresweb.com/ije/
ije/2018/104-123.pdf
Gadi, B.R., and Laxmi, V. (2012). Effect of salicylic acid and moisture
stress on sugar content and sucrose synthase activity in Ziziphus
seedlings. Biochemical and Cellular Archives, 12:21-23. http://
www.connectjournals.com/achivestoc2.php?fulltext=1378201H_2.
pdf&&bookmark=CJ-033216&&issue_id=01&&yaer=2012
Galon, L., Pawelkiewicz, R., Müller, C., da Silva, M.D., Orestes, S.C., Barretta,
F.M., de Oliveira R.E.R., Agazzi, L.R., Aspiazú, I., & Forte, C.T. (2022).
Morphophysiological changes in cleareld oilseed rape as a result of the
application of ALS-herbicides and weed competition. Journal of Plant
Diseases and Protection, 129:993-1003. https://doi.org/10.1007/s41348-
022-00607-6
Ghanbari, A.A., Mousavi, S.H., Gorji, A.M., & Rao, I. (2013). Effects of water
stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turkish
Journal of Field Crops, 18:73-77. http://www.eld-crops.org/assets/pdf/
product5211c60894006.pdf
Gholinezhad, E. (2020). Impact of drought stress and stress modiers on water use
efciency, membrane lipidation indices, and water relationship indices
of pot marigold (Calendula ofcinalis L.). Brazilian Journal of Botany,
43:747-759. https://doi.org/10.1007/s40415-020-00651-2
Gordillo-Curiel, A., Rodríguez-Larramendi, L.A., Salas-Marina, M.Á., & Rosales-
Esquinca, M.Á. (2021). Effect of salicylic acid on the germination and
initial growth of coffee (Coffea arabica L. var. Costa Rica 95). Revista
de la Facultad de Agronomía de la Universidad del Zulia, 38(1):43-59.
https://doi.org/10.47280/RevFacAgron(LUZ).v38.n1.03
Goswami, B., Rankawat, R., & Gadi, B.R. (2020). Physiological and antioxidative
responses associated with drought tolerance of Lasiurus sindicus Henr.
endemic to Thar desert, India. Brazilian Journal of Botany, 43:761-773.
https://doi.org/10.1007/s40415-020-00666-9
Grieve, C.M., and Grattan, S.R. (1983). Rapid assay for the determination of water
soluble quaternary ammonium compounds. Plant and Soil, 70:303-307.
https://doi.org/10.1007/BF02374789
Hossain, A., Pamanick, B., Venugopalan, V.K., Ibrahimova, U., Rahman, M.A.,
Siyal, A.L., Maitra, S., Chatterjee, S., & Aftab, T. (2022). Emerging roles
of plant growth regulators for plants adaptation to abiotic stress-induced
oxidative stress. In: Aftab, T., Naeem, M. (Eds). Emerging Plant Growth
Regulators in Agriculture. Academic Press, UK. pp: 1-72. https://doi.
org/10.1016/B978-0-323-91005-7.00010-2
Idrees, M., Khan, M.M.A., Aftab, T., Naeem, M., & Hashmi, N. (2010). Salicylic
acid-induced physiological and biochemical changes in lemongrass
varieties under water stress. Journal of Plant Interactions, 5:293-303.
https://doi.org/10.1080/17429145.2010.508566
Jacinto-Hernández, C., Coria-Peña, M., Contreras-Santos, G., Martínez-López,
L., Zapata-Martelo, E., y Ayala-Carrillo, M.R. (2019). Azúcares totales
y proteína en frijol nativo de la región Triqui Alta, Oaxaca. Revista
Mexicana de Ciencias Agrícolas, 10:1667-1674. https://doi.org/10.29312/
remexca.v10i7.2114
Kordi, S., Saidi, M., & Ghanbari, F. (2013). Induction of drought tolerance in
sweet basil (Ocimum basilicum L) by salicylic acid. International Journal
of Agricultural and Food Research, 2:18-26. https://doi.org/10.24102/
ijafr.v2i2.149
Latimer, G.W. (2012). Ofcial methods of analysis of AOAC international. 19th
ed. Gaithersburg, Maryland, USA.
Lichtenthaler, H.K., and Buschmann, C. (2001). Chlorophylls and carotenoids:
measurement and characterization by UV-Vis spectroscopy. In: Wrolstad,
R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S.,
Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds). Current protocols in
food analytical chemistry. John Wiley and Sons, New York, USA. Unit
F4.3. https://doi.org/10.1002/0471142913.faf0403s01
Men, Y., Wang, D., Li, B., Su, Y., & Chen, G. (2018). Effects of drought stress
on the antioxidant system, osmolytes and secondary metabolites of
Saposhnikovia divaricata seedlings. Acta Physiologiae Plantarum,
40:191. https://doi.org/10.1007/s11738-018-2762-0
Morosan, M., Al Hassan, M., Naranjo, M.A., López-Gresa, M.P., Boscaiu, M.,
& Vicente, O. (2017). Comparative analysis of drought responses in
Phaseolus vulgaris (common bean) and P. coccineus (runner bean)
cultivars. The EuroBiotech Journal, 1:247-252. https://doi.org/10.24190/
ISSN2564-615X/2017/03.09
Morr, C., German, B., Kinsella, J., Regenstein, J., Buren, J.V., Kilara, A.,
Lewis, B., & Mangino, M. (1985). A collaborative study to develop a
standardized food protein solubility procedure. Journal of Food Science,
50:1715-1718. https://doi.org/10.1111/j.1365-2621.1985.tb10572.x
Muhie, S.H. (2022). Optimization of photosynthesis for sustainable crop
production. CABI Agriculture and Bioscience, 3, 50. https://doi.
org/10.1186/s43170-022-00117-3
Ozturk, M., Unal, B.T., García-Caparrós, P., Khursheed, A., Gul, A., &
Hasanuzzaman, M. (2020). Osmoregulation and its actions during
the drought stress in plants. Physiologia Plantarum, 1-15. https://doi.
org/10.1111/ppl.13297
R Core Team (2022). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. https://www.R-
project.org/
Rao, S.R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., & Sher, A. (2012).
Role of foliar application of salicylic acid and L-tryptophan in drought
tolerance of maize. The Journal of Animal & Plant Sciences, 22:768-772.
http://thejaps.org.pk/docs/v-22-3/42.pdf
Rehman, A., Safeer, M., Qamar, R., Mohsin-Altaf, M., Sarwar, N., Farooq, O.,
Mazher-Iqbal, M., and Ahmad, S. (2019). Exogenous application of
salicylic acid ameliorates growth and yield of sunower (Helianthus
annuus L.) in saline soil. Agrociencia, 53:207-217. http://www.colpos.
mx/agrocien/Bimestral/2019/feb-mar/art-6.pdf
Reyes-Matamoros, J., Martínez-Moreno, D., Rueda-Luna, R., & Rodríguez-
Ramírez, T. (2014). Efecto del estrés hídrico en plantas de frijol (Phaseolus
vulgaris L.) en condiciones de invernadero. Revista Iberoamericana
de Ciencias, 1:191-203. http://www.reibci.org/publicados/2014/
julio/2200132.pdf
Surabhi, G.K., and Rout, A. (2020). Glycine betaine and crop abiotic stress
tolerance: an update. In: Roychoudhury, A., Tripathi, D.K. (Eds).
Protective chemical agents in the amelioration of plant abiotic stress:
biochemical and molecular perspectives. John Wiley & Sons, NJ, USA.
pp: 24-52. https://doi.org/10.1002/9781119552154.ch2
Teniente-Martínez, G., González-Cruz, L., Cariño-Cortes, R., & Bernardino-
Nicanor, A. (2016). Caracterización de las proteínas del frijol ayocote
(Phaseolus coccineus L.). Investigación y Desarrollo en Ciencia y
Tecnología de Alimentos, 1:1-6. http://www.fcb.uanl.mx/IDCyTA/les/
volume1/1/1/1.pdf
Yan, X., Liu, J., Wu, K.X., Yang, N., Pan, L.B., Ying, C., Liu, Y. & Zhong-Hua,
T. (2022). Comparative analysis of endogenous hormones and metabolite
proles in early-spring owering plants and unowered plants revealing
the strategy of blossom. Journal of Plant Growth Regulation, 41:2421-
2434. https://doi.org/10.1007/s00344-021-10452-w