
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(3): e223938. July - September. ISSN 2477-9407.
6-7 |
T7 with doses of 0.00 % and 0.25 % of EMS at 48 hours presented
values of 2 live individuals, causing slight and moderate damage,
respectively, such as drying of the foliage, deterioration of its quality
in the control treatments.
Table 7. Severity of the pest (spittlebug) by plants at 60 days after
inoculation, in janeiro grass using EMS.
Treatments
EMS
dose
(%)
Hours of
Impregnation
Nymph presence
per plant / average
Crop
damage
intensity
T1 0.00 24 2 Moderate
T2 0.25 24 2 Moderate
T3 0.50 24 1 Mild
T4 0.75 24 0 No harm
T5 1.00 24 0 No harm
T6 0.00 48 2 Moderate
T7 0.25 48 2 Moderate
T8 0.50 48 1 Mild
T9 0.75 48 0 No harm
T10 1.00 48 0 No harm
The observed spittlebug damage agrees with the description made
by Sotelo et al. (2003). Those entomologists of the CIAT, indicated
that the intense attack of the Cercópids causes total drying of the
foliage, whereas, slight attacks generate a growth retardation, and
reduces the forage production. The damages of this pest have been
registered in humid regions planted with susceptible grasses.
Conclusions
The treatments with doses of 0.25% of EMS at 48 hours, managed
to maintain the best agronomic performance until 95 days, where the
plant height had its best development similarly to the one determined
as LD
50
(0.32%).
The doses of ethyl-metha- sulfonate (EMS) had a direct effect
on the seizure of the stolons of the janeiro grass, presenting a high
deation index in doses higher than 0.50%. Therefore, the best soak
time was 48 hours.
The janeiro grass impregnated with EMS under greenhouse
conditions showed slight damage caused by spittlebug. Thus, it
cannot be stated that there was tolerance in this research work.
Literature cited
Akhtar, N. (2014). Effect of physical and chemical mutagens on morphological
behavior of tomato (Solanum lycopersicum) cv. “Rio Grande” under
conditions of heat stress. Plant Breeding and Seed Science, 70(1), 69-79.
https://doi: 10.1515/plass-2015-0014.
Ashok, V., Kumari, R., Amutha, R., Siva, T., Juliet, S. & Ananda, C. (2009). Effect
of chemical mutagen on expression of characters in arid legume pulse–
cowpea (Vigna unguiculata (L.) Walp.). Research Journal of Agriculture
and Biological Sciences, 5(6), 1115–1120. http://www.aensiweb.net/
AENSIWEB/rjabs/rjabs/2009/1115-1120.pdf
Bhattarai, G., Schmid, R. & McCornack, B. (2019). Remote sensing data to detect
Hessian y infestation in commercial wheat elds. Scientic Reports, 9,
6109. https://doi.org/10.1038/s41598-019-42620-0.
Castro, U., Morales, A. & Peck, D. (2005). Population dynamics and phenology
of spittlebugs from Zulia carbonaria (Lallemand) pastures (Homoptera:
Cercopidae) in the geographic valley of the Cauca River, Colombia.
Neotropical Entomology, 34(3), 459-470. https://doi.org/10.1590/S1519-
566X2005000300015
Corrales-Lerma, R., Avendaño-Arrazate, C., Morales-Nieto, C.,
Santellano-Estrada, E., Villarreal-Guerrero, F., Melgoza-Castillo, A.,
Álvarez-Holguín, A. & Gómez-Simuta, Y. (2019).
Radiación gamma para inducción de mutagénesis en pasto rosado
(Melinis repens (Willd.) Zizka). Acta Universitaria, 29, 1-10. https://doi.
org/10.15174/au.2019.1847.
Cobos, F., Gómez, L., Reyes Borja, W., Hasang, E., Ruilova, M. & Duran, P.
(2021). Effects of salinity levels in Oryza sativa in different phenological
stages under greenhouse conditions. Revista de la Facultad de Agronomía
de la Universidad del Zulia, 39(1), e223905. https://doi.org/10.47280/
RevFacAgron(LUZ).v39.n1.05.
Costa, A. (2017). Indución y evaluación de mutantes de alcachofa tolerantes
a salinidad. Universitas Miguel Hernández. http:// http://dspace.
umh.es/bitstream/11000/3445/1/Costa%20Ortiz%2C%20Aida%20
TFGBiotec%202014-15.pdf.
Emrani, S., Arzani, A. & Saeidi, G. (2011). Seed viability, germination and
seedling growth of canola (Brassica napus L.) as inuenced by chemical
mutagens. African Journal of Biotechnology, 10(59), 12602-12613.
https://doi.org/10.5897/AJB11.329.
Gómez, J., Aguirre, L., Gómez, L., Reyes, W., Rodríguez, J. & Arana, L.
(2020). Dosis letal media para inducir mutaciones, con rayos gamma,
en pastojaneiro (Eriochloa polystachya Kunth). Revista de Producción
Animal, 32(1), 73-83. https://revistas.reduc.edu.cu/index.php/rpa/article/
view/e339.
González, M. (2014). Desarrollo de una plataforma de tilling en melón (Cucumis
melo L.). Tesis Doctoral. Universitat Autónoma de Barcelona, Barcelona,
España. 282 p. https://ddd.uab.cat/record/127025.
Greene, E., Codomo, C., Taylor, N., Henikoff, J., Till, B., Reynolds, S., Enns L.,
Burtner C., Johnson, J., Odden, A. & Steven, L. (2003). Spectrum of Che-
mically induced mutations from large-scale reverse genetic screening in
Arabidopsis. Genetics, 164(2), 731–740. https://doi.org/10.1093/gene-
tics/164.2.731.
Hasang, E., Gómez, J., Moreira, E. & Cobos, F. (2020). Variabilidad fenotípica,
y desarrollo de estolones de pasto Janeiro (Eriochloa polystachya Kun-
th), irradiados a 52 gy de rayos gamma (60co). Journal of Science and
Research, 5, 96-109. https://revistas.utb.edu.ec/index.php/sr/article/
view/1000.
Khalil, F., Naiyan, X., Tayyab, M. & Pinghua, C. (2018). Screening of EMS-In-
duced Drought-Tolerant Sugarcane Mutants Employing Physiological,
Molecular and Enzymatic Approaches. Agronomy, 8(10), 226. doi:https://
doi.org/10.3390/agronomy8100226.
Konzak, C., Nilan, R., Wagner, T. & Foster, R. (1965). Efcient chemical mutage-
nesis, the use of induced mutations in Plant Breeding (Rep. FAO/IAEA
Tech. Meeting Rome, 1964). Porgamon Press, Oxford. p. 49–70.
Kumar, G. & Pandey, A. (2020). Ethyl metha- sulfonate-induced changes in
cyto-morphological and biochemical aspects of Coriandrum sativum L.
Journal of the Saudi Society of Agricultural Sciences, 18(4), 469-475.
https://doi.org/10.1016/j.jssas.2018.03.003.
López, E. (2011). Inducción de variabilidad genética para tolerancia a estreses
abióticos mediante técnicas de cultivo in vitro en Cenchrus ciliaris L.
Universidad Internacional de Andalucía, España. 113 p. https://core.
ac.uk/download/pdf/72021262.pdf.
Mendoza, R. (2020). Inducción mutagénica en cultivares de Eustoma
grandiorum mediante el uso de metanosulfonato de etilo
(EMS). Centro de Investigación y Asistencia en Tecnología y
diseño del estado de Jalisco, A.C, México. https://ciatej.
repositorioinstitucional.mx/jspui/bitstream/1023/746/1/Rafael%20
Mendoza%20G%C3%B3mez%20Bio.pdf.
Mostafa, G. (2015). Effect of some chemical mutagens on growth, phytochemical
composition and the induction of mutations in Khaya senegalensis.
International Journal of Plant Breeding and Genetics, 9(2), 57-67.
https://doi:10.3923 / ijpbg.2015.57.67.
Nobel, P. (1999). Physicochemical & Environmental. Plant Physiology.
Second Edition. Academic Press. San Diego, California,
USA. 474 p. https://books.google.co.ve/books?id=yW_
pptyiMHoC&dq=Nobel,+P.+(1999).&lr=&hl=es&source=gbs_
navlinks_s.
Pankhurst, C, Blair, M & Broughton, W. (2004). Tilling the beans. In Proceedings
of the 3rd International Scientic Meeting, Phaseomics III, pp. 13-15.
Porch, T., Blair, M., Lariguet, P., Galeano, C., Pankhurst, C. & Broughton, W.
(2009). Generation of a Mutant Population for TILLING Common Bean
Genotype BAT 93. Journal of the American Society for Horticultural
Science, 134(3), 348-355. https://doi.org/10.21273/JASHS.134.3.348.
Rodríguez, N., Torres, C., Chaman, M. & Hidalgo J. (2019). Efecto del estrés
salino en el crecimiento y contenido relativo del agua en las variedades
IR-43 y amazonas de Oryza sativa "arroz" (Poaceae). Arnaldoa, 26(3),
931-942. https://dx.doi.org/10.22497/arnaldoa.263.26305.
Rojas, L., Collado, R., León, A., Rivero, L., Ocaña, B., Hernández, M., Veitía, N.,
Martirena, A., Torres, D. & García, L. (2016). Concentración óptima de
metano sulfonato de etilo en Phaseolus vulgaris L. cv. ‘DOR 364’ para
inducir variaciones fenotípicas. Biotecnología Vegetal, 16(3), 179-188.
https://revista.ibp.co.cu/index.php/BV/article/view/526.