© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: robertomartinezlo@vet.una.py
Roberto Martínez-López
1,2*
Olga Niz
3
Maura Isabel Díaz-Lezcano
4
Liz Mariela Centurión
5
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n2.06
Environment
Associate editor: Dr. Julio Torres
Technical University of Manabí, Institute of Basic Sciences,
Republic of Ecuador.
Keywords:
Pastures
Livestock
Biomass
Soil
Carbon storage
Dynamics of carbon storage in forage systems in a livestock farm in Concepción, Paraguay
Dinámica del almacenamiento de carbono en sistemas forrajeros en una nca pecuaria en Concepción,
Paraguay
Dinâmica do estoque de carbono em sistemas pastoris para pecuária de corte em Concepción,
Paraguay
1
Centro Multidisciplinario de Investigaciones Tecnológicas,
Universidad Nacional de Asunción, San Lorenzo, Paraguay.
2
Facultad de Ciencias Veterinarias, Universidad Nacional de
Asunción, San Lorenzo, Paraguay.
3
Facultad de Ciencias Agrarias, Universidad Nacional de
Concepción, Concepción, Paraguay.
4
Facultad de Ciencias Agrarias, Universidad Nacional de
Asunción, San Lorenzo, Paraguay.
5
Facultad de Ciencias Exactas y Naturales, Universidad
Nacional de Asunción, San Lorenzo, Paraguay.
Received: 04-11-2021
Accepted: 16-03-2022
Published: 21-04-2022
Abstract
Although the capacity of plants to store carbon is known, obtaining
information about the sequestration potential in the soil and in herbaceous,
shrubby and tree biomass in land use systems is essential, even more so in
landscapes dominated by livestock. The objective was to study the dynamics
of carbon storage in three different forage systems in a livestock farm in
Concepción, Paraguay. For this, the carbon level was estimated at different
soil depths (0-20, 20-40 and 40-60 cm) and in the herbaceous/shrub biomass
in three systems (Brachiaria brizantha cv Marandú, Panicum maximum cv
Colonial and Leucaena leucocephala consortium with colonial), with an
interval of 30 days between the three measurement moments. The results
generated from the biomass indicated that the system constituted by the
colonial forage consortium with L. leucocephala, presented the highest level
of carbon (3.73 t.ha
-1
), showing a signicant difference in relation to the B.
brizantha (2.12 t.ha
-1
; p<0.05). On the other hand, the initial period showed
higher carbon concentration (4.55 t.ha
-1
; p<0.05). Likewise, a higher content
was found at a depth of 0-20 cm (20.26 t.ha
-1
; p<0.05). These results were
obtained in a winter process. In this regard, it is important to mention that
forage shrubs in systems with pastures constitute a fundamental nutritional
resource in winter, in this sense it is recommended to use improved and
consortium pasture systems, to increase carbon storage, achieve stable and
productive systems, in correspondence with its potentialities.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928 April - June. ISSN 2477-9407.
2-7 |
Resumen
A pesar de que se conoce la capacidad que tienen los vegetales para
almacenar carbono, la obtención de información acerca del potencial
de secuestro en el suelo y en la biomasa herbácea, arbustiva y arbórea
en los sistemas de uso de tierra, es fundamental, más aún en paisajes
dominados por la ganadería. Así, el objetivo fue estudiar la dinámica
del almacenamiento de carbono en tres diferentes sistemas forrajeros
en una nca pecuaria en Concepción, Paraguay. Para ello, se estimó
el nivel de carbono a diferentes profundidades del suelo (0-20, 20-
40 y 40-60 cm) y en la biomasa herbácea/arbustiva en tres sistemas
(Brachiaria brizantha cv Marandú, Panicum máximum cv Colonial
y Leucaena leucocephala consorciada con colonial), con un intervalo
de 30 días entre los tres momentos de medición. Los resultados
generados en biomasa, indicaron que el sistema constituido por la
forrajera colonial consorciada con L. leucocephala, presentó el nivel
más alto de carbono (3,73 t.ha
-1
), mostrando diferencia signicativa en
relación a la B. brizantha (2,12 t.ha
-1
; p<0,05). Por otro lado, el periodo
inicial mostró mayor concentración de carbono (4,55 t.ha
-1
; p<0,05).
Igualmente, se pudo constatar mayor contenido a una profundidad
de 0-20 cm (20,26 t.ha
-1
; p<0,05). Estos resultados fueron obtenidos
en un proceso invernal. Al respecto, es importante mencionar que las
arbustivas forrajeras en sistemas con pasturas constituyen un recurso
nutricional fundamental en invierno, en ese sentido se recomienda
utilizar sistemas de pasturas mejoradas y consorciadas, para aumentar
el almacenamiento de carbono, lograr sistemas estables y productivos,
en correspondencia con sus potencialidades.
Palabras clave: pasturas, ganadería, biomasa, suelo, almacenamiento
de carbono.
Resumo
Embora seja conhecida a capacidade das plantas em armazenar
carbono, é essencial obter informações sobre o potencial de
sequestro no solo e na biomassa herbácea, arbustiva e arbórea em
sistemas de uso da terra, ainda mais em paisagens dominadas pela
pecuária. O objetivo foi estudar a dinâmica do armazenamento de
carbono em três diferentes sistemas forrageiros em uma fazenda
de gado em Concepción, Paraguai. Para isso, o teor de carbono foi
estimado em diferentes profundidades do solo (0-20, 20-40 e 40-60
cm) e na biomassa herbácea/arbustiva em três sistemas (Brachiaria
brizantha cv Marandú, Panicum maximum cv Colonial e Leucaena
leucocephala consórcio com colonial), com intervalo de 30 dias
entre os três momentos de medição. Os resultados gerados a partir
da biomassa indicaram que o sistema constituído pelo consórcio
forrageiro colonial com L. leucocephala, apresentou o maior teor de
carbono (3,73 t.ha
-1
), apresentando diferença signicativa em relação
ao B. brizantha (2,12 t.ha
-1
; p<0,05). Por outro lado, o período inicial
apresentou maior concentração de carbono (4,55 t.ha
-1
; p<0,05). Da
mesma forma, um maior teor foi encontrado na profundidade de
0-20 cm (20,26 t.ha
-1
; p<0,05). Esses resultados foram obtidos em
um processo de inverno. Nesse sentido, é importante mencionar que
os arbustos forrageiros em sistemas com pastagens constituem um
recurso nutricional fundamental no inverno, neste sentido recomenda-
se o uso de sistemas de pastagem melhorados e consorciados, para
aumentar o armazenamento de carbono, alcançar sistemas estáveis e
produtivos, em correspondência com suas potencialidades.
Palavras-chave: pastagens, pecuária, biomassa, chão, armazenamento
de carbono.
Introduction
In Latin America, one of the main changes in land use has been
the deforestation of forests to establish pastures for livestock, and
currently, pasture areas continue to increase. The main components
of carbon (C) storage in land use are soil organic carbon (SOC) and
aboveground soil biomass. Despite the recognition of the potential
of both forests and agroforestry systems to store C, there is still a
lack of information on soil and tree biomass sequestration in livestock
landscapes in Latin America.
In this context, livestock activities have a signicant impact on
the environment, producing 9% of carbon dioxide (CO
2
) emissions
of anthropogenic origin, where the livestock sector, in general, is
considered responsible for 18% of greenhouse gas (GHG) emissions
measured in CO
2
equivalents, in addition to emitting 37% of methane
(CH
4
) and 65% of nitrous oxide (N
2
O) (González et al., 2015). In this
regard, Camero-Rey (2020), points out the questioning of livestock
production, both for its effect on the soil and its contribution to
the increase in GEI emissions. According to Lara (2019), livestock
intensication has favored economic and social development;
however, inadequate management of pastures and animals has led
the agricultural sector to have a negative impact on the environment.
In view of this, silvopastural practices have played a key role in
contributing to the recovery of degraded soils in tropical regions, in
addition to being a production alternative that promotes the mitigation
of the effects on the environment.
In Paraguay, the livestock activities are quite active; therefore,
it is important to monitor C levels in soil and herbaceous and tree
biomass. Thus, the objective of this work consisted to study the
dynamics of C storage, in three different forage systems and in the
soil at different depths, in a livestock farm in the department of
Concepción, Paraguay.
Materials and methods
Study area
The study was carried out on a private livestock farm with
rotational grazing, of 410 hectares (ha) in the locality of Capitán
Giménez, district of Horqueta, Department of Concepción, Paraguay
(gure 1). The facility is located to the north of the Oriental region
(parallels 22º 00’ and 23º 30’ south latitude and, meridians 58º 00’
and 56º 11’ west longitude), locality of Capitán Giménez, district of
Horqueta, Department of Concepción, Paraguay. The area exhibits
heterogeneous topography, being the center and north, low and at,
with extensive grasslands for grazing alternated with wooded sectors
(Instituto Nacional de Estadísticas [INE], 2002).
Figure 1. Study area, Capitán Giménez. District of Horqueta,
Paraguay.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Martínez-López et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928
3-7 |
Procedure
The eld operation was carried out in three moments (1, 2, and
3) with an interval of 30 days between them, during a characteristic
winter period (between June and September). The parameter of
interest consisted of the C concentration measured in tons per hectare
(t.ha
-1
), at different soil depths (0-20, 20-40, and 40-60 centimeter
(cm)) and the herbaceous/shrub biomass in three direct grazing
systems formed by: (1) only Brachiaria brizantha cv Marandú, (2)
only Panicum maximun cv. Colonial and (3) the consortium dened
as the combination of Colonial with Leucaena leucocephala. It is
important to point out, that the grazing area constituted by these
systems, had a month of rest of the animal load at the beginning of
the analysis, taking into account that in the case of mentioned grasses,
they are tropical perennials, and in winter, they are given a grazing
rest. The units or plots were of the nested type, where the limits given
the matrix unit considered independently for each system (75 x 15
meters (m)) concentrated three subplots (25 x 15 m). The sampling
areas were marked with wooden stakes so that the same points were
measured in subsequent samplings.
Herbaceous and shrub plant biomass
Herbaceous plant biomass was collected using a 1 square meter
(m
2
) frame. Biomass sampling was performed randomly, establishing
a transept diagonally to each matrix plot, joining 2 opposite vertices.
Subsequently, all the biomass was cut at 15 cm from the ground,
within the area delimited by the square. After, they were placed in
coded bags; the fresh weight was determined (electronic balance,
ACS-C, Tokyo, Japan) and nally, they were dried in an oven (UN30,
Memmert, Germany) at a temperature of 105°C (48 hours). The
dry matter (MS) was multiplied by 0.5 to estimate the C content
(Intergovernmental Panel on Climate Change [IPCC], 2003.
Regarding shrub biomass, 15 trees were randomly selected within
the matrix plot (75 x 15 m) and the technique of targeted sampling
was applied to the most tender sections (leaves and twigs, simulating
the harvesting by the animal and its incidence on C dynamics) of each
tree. Green matter (MV) and MS were determined, whose value was
multiplied by 0.5 to estimate the C content (IPCC, 2003).
Five repetitions were considered (biomass samples) for each
system, at each time of evaluation. For the estimation of total biomass
(BT) the equation: BT=0.112 x (pw x DAP
2
x H)
0,916
was used, which
includes the diameter at breast height (DAP), wood density (pw), and,
height (H) (Chavé et al., 2005).
Soil samples
The soil was extracted by opening mini-trial pits. Three composite
samples were taken at each of the three depths (0-20, 20-40, and 40-
60 cm), in each system, totaling 27 sample units in each period. For
the estimation of C, the Van Benmelen factor of 1.724 was used,
which results from the assumption that soil organic matter (OM)
contains 58% C (Vela and Rodriguez, 2012), from the equation: %C
= % OM/1.724 or %C = % OM (0.58).
Statistical analysis
The data were analyzed in R software (R Core Team, 2020),
applying descriptive statistics, factorial analysis of variance
(ANOVA) (Factors considered: moment, forage species, and depth),
and, Tukey’s test, with a signicance level of 5% (Gutiérrez and De
La Vara, 2012).
Results and discussion
Estimation of carbon in biomass
Table 1 shows the descriptive measures for C in biomass at the
three moments of measurement according to the forage system.
Visualizing the initial period (moment 1) of evaluation, it is
possible to detect that, the system conformed by colonial showed
the highest average level of C (5.99 t.ha
-1
), with a higher standard
deviation (DE) (±1.49). However, the highest coefcient of variation
(CV) was evidenced in B. brizantha (39.03%), with a minimum value
(MN) of 0.87 t.ha
-1
and a maximum (MAX) of 3.09 t.ha
-1
, denoting
a greater variation margin, compared to the other species. Research
made by Giraldo et al., (2006), who evaluated different types of
pastures without trees, among them, estrella (Cynodon plectostachyus)
and Guinea, Tanzania, and Mombasa (Panicum maximum), indicated
a lower value (3.19 t.ha
-1
) than those registered in colonial and in the
consortium system (colonial+L. leucocephala). While Miranda et al.,
(2007), mentioned for agrosilvopastoral systems in Cuba, an average
value of C similar (1.63 t.ha
-1
) to B. brizantha. However, in another
study (Miranda et al., 2008), considering a silvopastoral system
composed of L. leucocephala and Andropogon guayanus, the level
was higher (8.55 t.ha
-1
) in relation to the results obtained.
The results of Timoteo et al., (2016) show an accumulation of C
during the rst year in biomass and aerial necromass in agroforestry
systems of L. leucocephala, Theobroma cacao, and Cajanus cajan
(11.37 t.ha
-1
), in this sense, L. leucocephala is a species that presents
good attributes to be used in silvopastoral systems, for being able to
store large amounts of C in its biomass (Soto-Correa et al., 2019). For
their part, Naranjo et al., (2012), state that the degraded and improved
pastures are net emitters of GEI, with a value equivalent to 3.153
and 3.259 kg CO
2
eq.h
-1.
year
-1
, respectively; while the SSPi remove
GEI from the atmosphere, i.e., they have a positive balance of 8,800
and 26.56 kg CO
2
eq.h
-1.
year
-1
alone and associated with timber trees,
respectively.
Table 1. Descriptive measures of C level (t.ha
-1
) in biomass.
Moment Forage species Mean DE CV (%) Minimum Maximum
1
B. brizantha 2.28 0.89 39.03 0.87 3.09
Colonial 5.99 1.49 24.91 4.15 7.90
Consortium (Colonial+ L. leucocephala.) 5.39 1.42 26.41 3.50 7.43
2
B. brizantha 1.72 0.48 27.98 1.17 2.39
Colonial 2.34 0.78 33.31 1.36 3.22
Consortium (Colonial+ L. leucocephala) 3.04 0.60 19.76 2.40 3.74
3
B. brizantha 2.35 0.35 14.94 2.05 2.87
Colonial 1.88 0.35 18.47 1.35 2.28
Consortium (Colonial+ L. leucocephala) 2.78 0.33 11.87 2.44 3.23
DE: Standard deviation; CV: Coefcient of variation.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928 April - June. ISSN 2477-9407.
4-7 |
Likewise, Casasola et al., (2013) manifest that total C stored
in improved pastures of B. brizantha (153 t.ha
-1
) was lower than in
pastures of the same species associated with Eucalyptus deglupta
(173.7 t.ha
-1
) and, Arachis pintoi (186.8 t.ha
-1
). Trees in pastures
store signicant amounts of C in their stems, which is very
important since it has a greater permanence in the system than that
one accumulated in the herbaceous vegetation. The management of
improved pastures with trees in the humid and sub-humid tropics
could potentially x around 635,000 t of CO
2
per year. According
to Callo et al. (2011), the efciency of C xation in pastures with
improved grasses lies in the fact that they generally have deep root
systems, which can contribute to the net primary productivity of the
species and, therefore, to the C immobilization capacity.
Perennial plants can translocate more C than annual plants,
which indicates that they have a higher capacity for C storage in
the roots. In the case of perennial pastures, this property facilitates
the regrowth after cutting or grazing (Schmitt et al., 2013). This
dynamic translocation of C was evidenced in the forages included
in this research.
Regarding moment 2 (table 1), the colonial forage species
consortium with L. leucocephala showed the highest average
level of C (3.04 t.ha
-1
), followed by colonial (2.34 t.ha
-1
) and B.
brizantha (1.72 t.ha
-1
). The DE values had a decreasing behavior
when comparing the forage species, being higher in colonial
(±0.78) and lower in B. brizantha (±0.48). These variations denote
a higher concentration around the central values for the levels of C
uptake in the B. brizantha forage species. Taking into account the
CV, a high value in colonial (33.3%) can be observed, followed
by B. brizantha (27.91%) and nally, colonial consortium with L.
leucocephala (19.47%), the latter showing greater homogeneity
among the samples. However, the CV levels, for the most part,
can be considered optimal in terms of data variability, giving
condence to the study (Martínez-López, 2017). About the C values
themselves, Anguiano et al. (2013) obtained in their research higher
storage levels in the graminoid component, Cuba CT 115, without
associated L. leucocephala.
Concerning descriptive measures of the third biomass sampling
by forage species, average values of C quantity were obtained as
follows: colonial (1.88 t.ha
-1
), B. brizantha (2.35 t.ha
-1
), and colonial
consortium with L. leucocephala (2.78 t.ha
-1
), the latter standing out
as the system with the highest uptake rate. The DE indicated that
the consortium (colonial+ L. leucocephala) was characterized by a
lower level of data spacing around the mean (±0.33) although the
differences were minimal with the other pasture types.
Table 2 shows the results of the comparison of means using
Tukey’s test for the main factors and the one of interaction.
Overall, it was observed that at the rst moment of evaluation,
C levels were higher than in the following two measurements
(p<0.05). However, in moments 2 and 3, the values were more
stable. Regarding the grazing systems, the consortium recorded
the highest average value of C (3.73 t.ha
-1
), differing from B.
brizantha, (p<0.05), not so from colonial (p˃0.05). Regarding the
signicant interaction effect (p<0.05), that is, the C values suffered
variations and were different in some combined levels of the factors
(moment and forage species), it can be visualized that, in the initial
period, in the colonial and consortium type pasture (colonial +
L. leucocephala), the C concentrations were higher, showing
statistically signicant differences with the different treatments
analyzed (p<0.05). This higher level of C storage recorded in the
rst measurement is due to the fact that it was evaluated at the
beginning of the winter period, taking into account that we are
working on C4 perennial forage species, categorized in this way,
precisely because of the conguration of their photosynthetic
system and the temperature requirements for their physiological
dynamics (Ludlow, 1985; Winslow et al., 2003).
Studies developed in Costa Rica evidenced that the land use
system with an improved pasture of B. brizantha plus trees, presented
in the three evaluations the highest average values of MS, exceeding
by 45 and 55% the yields of the system under degraded pastures
(Ramos-Veintimilla, 2003). In general, it can be stated that when the
pasture is used correctly, the biomass bank with implanted pastures
can be an option to increase C storage in the soil, as its exploitation
time increases, depending on its management system, among other
factors. In this sense, Ferri (2014) concluded that the calculated
increase of CO
2
in the atmosphere would be a determinant in the
increase of productivity and/or would attenuate the effects of climatic
variability on C4 pastures, as is the case of those used in this study.
However, he stated that on the other hand, it would negatively affect
the nutritive value of the forage, decreasing its protein concentration.
Table 2. Comparison of means for C level (t.ha
-1
) in biomass.
Factors Categories Mean ± DE
Sampling moments
1 4.55 ± 2.07 a
2 2.37 ± 0.81 b
3 2.33 ± 0.50 b
Forage species
Consortium (Colonial+ L. leucocephala) 3.73 ± 1.48 a
Colonial 3.40 ± 2.11 a
B. brizantha 2.12 ± 0.64 b
Double interaction:
Moment-forage species
1-Colonial 5.99 ± 1.49 a
1-Consortium (Colonial+ L. leucocephala) 5.39 ± 1.42 a
2-Consortium (Colonial+ L. leucocephala) 3.04 ± 0.60 b
3-Consortium (Colonial+ L. leucocephala) 2.78 ± 0.33 b
3-B. brizantha 2.35 ± 0.35 b
2-Colonial 2.34 ± 0.78 b
1-B. brizantha 2.28 ± 0.89 b
3-Colonial 1.88 ± 0.35 b
2-B. brizantha 1.72 ± 0.48 b
DE: Standard deviation; Different contiguous letters between rows indicate statistically different means between categories according to the factor considered, at a
probability of error of 5%.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Martínez-López et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928
5-7 |
Soil carbon estimation
Table 3 shows the descriptive measures of C content at different
soil depths, according to the moment of measurement and type of
system.
Considering the initial moment (1), the highest average
concentration was recorded in B. brizantha pastures (26.95 t.ha
-1
) at
a depth of 0-20 cm, with a MIN value of 20.56 t.ha
-1
and a MAX of
33.45 t.ha
-1
. In terms of DE, among the three forage species considered
for the same soil level, the colonial type pasture consortium with L.
leucocephala, presented the lowest value (±3.20), with a CV equal
to 16.93%, showing homogeneity in the values referred to the same
parameter, always around the mean, contrary to what was observed
for the colonial pasture, where the amplitude was greater (MIN=11.49
t.ha
-1
and MAX=31.01 t.ha
-1
), showing a high level of CV (58.13%),
which denotes heterogeneous observations. This result could be due
to the existence of topographic irregularities within the area where the
soil samples were obtained.
The dynamics of C behavior, i.e., the C average values higher for
each of the species, at a soil level (0-20 cm), was evidenced in the
last two evaluation periods, although at moment 2, for the pasture
formed by colonial with L. leucocephala, the means were similar,
specically at two depths, 0-20 and 40-60 cm, verifying in the latter,
greater homogeneity in the data (CV=6.43%).
Table 3. Descriptive measures of C level (t.ha
-1
) in soil.
Moment Forage species Depth(cm) Mean DE CV (%) Mínimum Maximum
1
B. brizantha
0-20 26.95 6.45 23.92 20.56 33.45
20-40 16.02 1.60 9.98 14.28 17.42
40-60 12.66 1.40 11.08 11.85 14.28
Colonial
0-20 18.58 10.80 58.13 11.49 31.01
20-40 9.06 0.35 3.86 8.71 9.41
40-60 7.09 0.20 2.85 6.97 7.32
Consortium
(Colonial + L. leucocephala)
0-20 18.89 3.20 16.93 15.57 21.95
20-40 15.91 7.04 44.23 11.85 24.04
40-60 8.94 1.22 13.70 7,.66 10.10
2
B. brizantha
0-20 20.44 5.23 25.59 17.42 26.48
20-40 14.75 3.84 26.03 12.19 19.16
40-60 11.26 2.45 21.73 8.71 13.59
Colonial
0-20 15.80 5.75 36.40 9.41 20.56
20-40 10.34 0.53 5.12 9.76 10.80
40-60 7.78 1.06 13.67 6.62 8.71
Consortium
(Colonial + L. leucocephala)
0-20 21.95 5.23 23.83 16.72 27.18
20-40 13.36 0.73 5.45 12.54 13.94
40-60 21.83 1.40 6.43 20.56 23.34
3
B. brizantha
0-20 23.23
0.53 2.28 22.65 23.69
20-40 12.43 4.75 38.26 6.97 15.68
40-60 8.71 0.93 10.63 8.01 9.76
Colonial
0-20 15.44 4.49 29.09 10.45 19.16
20-40 10.33 2.80 27.07 7.66 13.24
40-60 7.21 0.73 10.09 6.62 8.02
Consortium
(Colonial + L. leucocephala)
0-20 21.02 3.62 1723 18.12 25.08
20-40 11.61 0.88 7.55 10.80 12.54
40-60 8.48 0.53 6.31 8.01 9.06
DE: Standard deviation; CV: Coefcient of variation; cm: centimeter.
On the other hand, the increase in stored C associated with the
greatest depth in the soil (moment 2), in the consortium forage
system (21.83 t.ha
-1
), could have been directly inuenced by the
powerful root system of L. leucocephala, evidenced in its type of
pivoting growth. These types of roots contribute with high dynamics
to the positive exchange of minerals between the plant-soil complex
(Instituto Nacional de Tecnología Agropecuaria [INTA], 2019). And
these interactions, according to their powerful root system, benet
soil productivity and conservation, storing signicant amounts of
organic matter (Torres-Guerrero et al., 2013). Regarding the nal
decrease of C in the greater depth of the consortium system, it would
be associated with the deciduous character of L. leucocephala,
evidenced since the low temperatures of the Paraguayan winter,
registered at the end of July and August, which considerably reduces
its capacity photosynthetic.
In similar research reported by Ibrahim et al., (2007), much higher
averages were found compared to those detected in this study. On
the other hand, the results obtained by Mora-Calvo (2001), showed
that at depths of 0-20 cm, the estrella forage species presented a
higher average C level than the one consortium with trees, coinciding
with the ndings of this study, where, B. brizantha showed a higher
average value than the colonial forage species consortium with L.
leucocephala. Likewise, Lok et al., (2013) maintain through their
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928. April - June. ISSN 2477-9407.
6-7 |
investigations that, as the soil sampling depth increases, the C content
decreases, since this is directly related to MO content, both in pasture
and tree cover. In addition, Timoteo et al., (2016) state that SOC
represents almost 60% of the total C stored in agroforestry systems,
such as those integrated by combinations with L. leucocephala (25,83
t.ha
-1
), and, it is remarkable to point out that it increases during the
rst year of planting. However, Lara (2019) recorded that there are no
signicant statistical differences (p=0.45) since live fences and fodder
banks reached 2.2% and scattered trees 2.7% of SOC, a situation that
indicates that the practices do not have an inuence on the storage of
C in the soil.
The results of the ANOVA analysis taking into account moment,
forage species, and depth are shown below (table 4).
Based on the results obtained, it can be indicated that there is
no signicant difference between sampling moments (p>0.05).
However, the effects concerning forage species, depth, and the double
interaction (moment*forage species) are active or inuence the level
of C (p<0.05). These results do not coincide with the ndings of
Callo et al. (2002), who found no signicant differences in different
land-use systems such as primary forest, secondary forest, shade
coffee, silvopasture, and pasture. However, the results found here,
show some similarity with those obtained by Anguiano et al. (2013),
who reported interaction between treatments in the different periods
evaluated.
Analytically evaluating the uctuation of C to identify the
statistically different means, both for the main factors and the double
interaction, the Tukey’s test was performed, the results of which are
shown below.
Table 4. ANOVA for the content of C (t.ha
-1
) in soil.
Variation source SC gl CM P-value
Moment 68.82 2 34.41 0.1095
Forage species 406.49 2 203.24 <0.0001
Depth 1432.10 2 716.05 <0.0001
Moment*Forage species 152.36 4 38.09 0.0494
Moment*Depth 120.92 4 30.23 0.1038
Forage species*Depth 65.29 4 16.32 0.3691
Moment*Forage species*Depth 175.33 8 21.92 0.1906
Error 806.02 54 14.93
SC: Sum of square; gl: Degrees of freedom; CM: Mean square; P-value<0.05 indicates signicant effect at a 5% probability of error.
Table 5. Comparison of means for C level (t.ha
-1
) in soil.
Factors Categories Mean ± DE
Forage species
B. brizantha
16.27 ± 6.54 a
Consortium (Colonial+ L. leucocephala) 15.78 ± 5.94 a
Colonial 11.29 ± 5.52 b
Depth
0-20 20.26 ± 5.86 a
20-40 12.65 ± 3.68 b
40-60 10.44 ± 4.59 b
Double interaction:
Moment-Forage Species
2- Consortium (Colonial+ L. leucocephala) 19.05 ± 5.07 a
1- B. brizantha 18.54 ± 7.30 a
2- B. brizantha 15.48 ± 5.30 ab
3- B. brizantha 14.79 ± 6.97 ab
1- Consortium (Colonial+ L. leucocephala) 14.58 ± 5.91 ab
3- Consortium (Colonial+ L. leucocephala) 13.70 ± 5.96 ab
1-Colonial 11.58 ± 7.58 b
2-Colonial 11.30 ± 4.60 b
3-Colonial 10.99 ± 4.48 b
DE. Standard deviation; Different contiguous letters between rows indicate statistically different means between categories according to the factor considered, at a 5%
probability of error.
Globally, when taking into account the forage species, the
mean values were high (16.27 and 15.78 t.ha
-1
) and similar in both
B. brizantha and consortium pastures (colonial+ L. leucocephala),
however, they showed signicant dissimilarities with the colonial
species (p<0.05). These results differ from those obtained by Ibrahim
et al. (2007), where B. brizantha presented the lowest level of C.
Regarding C values in soil samples at different depths, the 0-20 cm
category differed from the deeper strata (p<0.05), presenting the
highest concentration. Finally, observing the double interaction, there
were signicant differences in C levels at moment “1” for B. brizantha
and moment “2” for the consortium (colonial+L. leucocephala)
compared to the colonial species in the three evaluation periods
(p<0.05).
The decrease in stored C as root depth increases was expected
behavior, similar to that reported by authors such as Céspedes et al.
(2012) for grasslands in pastures under grazing. It is recommended
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Martínez-López et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e223928
7-7 |
to use improved pasture systems and consortium with shrubs, to
improve C storage and to achieve stable and productive systems, in
correspondence with their potentialities.
Conclusions
Overall, the highest storage of C in biomass corresponds to the
system constituted by the colonial pasture in consortium with L.
leucocephala. Among all the evaluation moments, the initial period
presents the highest C value.
At the soil level, from the analysis between different depths, it
was found that the stratum: 0-20 cm concentrates the highest content
of C. However, the systems constituted by B. brizantha grass and
the consortium (colonial+L. leucocephala), show similar behaviors.
Finally, it is noted that in the three evaluation periods, the colonial
species shows the lowest level of C.
Acknowledgment
To the company Invernada Don Félix (Capitán Giménez,
Concepción, Paraguay).
Literature cited
Anguiano, J. M., Aguirre, J. & Palma, J. M. (2013). Secuestro de carbono en
la biomasa aérea de un sistema agrosilvopastoril de Cocos nucifera,
Leucaena leucocephala Var. Cunningham y Pennisetum purpureum Cuba
CT-115. Avances en Investigación Agropecuaria, 17(1): 149-160. https://
www.redalyc.org/articulo.oa?id=83725698009
Botero, J. (2011). Contribución de los sistemas ganaderos tropicales al secuestro
de Carbono. Recuperado el 01 de enero del 2022 de https://www.fao.
org/3/y4435s/y4435s07.htm
Callo, D., Krishnamurthy, L. & Alegre, J. (2002). Secuestro de carbono por
sistemas agroforestales amazónicos. Chapingo Serie Ciencias Forestales
y del Ambiente, 8(2):101-106. https://www.redalyc.org/articulo.
oa?id=62980202
Camero-Rey, L. A. (2020). Fijación de carbono en un sistema silvopastoril
(Erythrina berteroana Urban y Brachiaria brizantha CV Toledo) de
una explotación lechera en la Región Huetar Norte de Costa Rica.
AgroInnovación en el Trópico Húmedo, 2(2): 19-26. https://revistas.tec.
ac.cr/index.php/agroinn/article/view/5194
Casasola, F., Ibrahim, M., Villanueva, M., Tobar, D., Sepúlveda, C. & Vega,
A. (2013). Potencial de los diferentes tipos de pasturas presentes
en dos zonas agroecológicas de Costa Rica para almacenar y jar
carbono. Recuperado el 26 de enero del 2021 de https://repositorio.
catie.ac.cr/bitstream/handle/11554/7918/Potencial_de_los_diferentes.
pdf?sequence=2
Céspedes Flores, F. E., Fernández, J. A., Gobbi, J. A. & Bernardis, A. C. (2012).
Reservorio de carbono en suelo y raíces de un pastizal y una pradera bajo
pastoreo. Fitotecnia Mexicana, 35(1): 79-86. https://www.redalyc.org/
articulo.oa?id=61023295009
Chavé, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B.
W., Ogawa, H., Puig, H., Riera, B. & Yamakura, T. (2005). Tree allometry
and improved estimation of carbon stocks and balance in tropical forests.
Oecologia, 145(1): 87-99. doi: 10.1007/s00442-005-0100-x
Ferri, C. (2014). Gramíneas forrajeras perennes de crecimiento estival (C4)
para la región Pampeana semiárida en el contexto de la intensicación
ganadera y del cambio climático: Resultados nales proyectos de
investigación cientíca y tecnológica orientados al desarrollo productivo
provincial. Universidad Nacional de La Pampa, EdUNLPam.
Giraldo, L. A., Zapata, M. & Montoya, E. (2006). Estimación de la captura y ujo
de carbono en silvopastoreo de Acacia mangium asociada con Brachiaria
dyctioneura en Colombia. Pastos y Forrajes, 29(4): 421-435. https://
www.redalyc.org/articulo.oa?id=269121676005
González, R., Sánchez, M. S., Chirinda, N., Arango, J., Bolívar, D. M., Escobar, D.
& Barahona, R. (2015). Limitaciones para la implementación de acciones
de mitigación de emisiones de gases de efecto de invernadero (GEI) en
sistemas ganaderos en sistemas ganaderos en Latinoamérica. Livestock
Research for Rural Development, 27(249). http://www.lrrd.org/lrrd27/12/
gonz27249.html
Gutiérrez, H. & De La Vara, R. (2012). Análisis y diseño de experimentos. (3
a
ed.).
McGraw-Hill Interamericana.
Ibrahim, M., Chacón, M., Cuartas, C., Naranjo, J., Ponce., G., Vega, P., Casasola,
F. & Rojas, J. (2007). Almacenamiento de carbono en el suelo y la
biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos
de Colombia, Costa Rica y Nicaragua. Agroforesteria en las Américas,
(45): 27-36.
Intergovernmental Panel on Climate Change. (2003). Good Practice Guidance
for Land Use, Land-Use Change and Forestry. Institute for Global
Environmental Strategies, Japan. Recuperado el 10 de noviembre del
2016 de https://www.ipcc-nggip.iges.or.jp/
Instituto Nacional de Estadísticas. (2002). Atlas censal del Paraguay. Recuperado
el 12 de diciembre del 2019 de https://www.ine.gov.py
Instituto Nacional de Tecnología Agropecuaria. (2019). Parcelas de introducción
de Leucaena leucocephala. Recuperado el 19 de febrero del 2022 de
https://www.inta.gob.ar/
Lara, A. (2019). Almacenamiento de carbono en biomasa arbórea y suelo de
prácticas silvopastoriles en la Reserva de la Biosfera La Sepultura,
Chiapas. [Tesis de Maestría, Universidad Autónoma Chiapas]. https://
www.biopasos.com/informes.php
Lok, S., Fraga, S., Noda, A. & García, M. (2013). Almacenamiento de carbono en
el suelo de tres sistemas ganaderos tropicales en explotación con ganado
vacuno. Revista Cubana de Ciencia Agrícola, 47(1): 75-82. https://www.
redalyc.org/articulo.oa?id=193028545014
Ludlow, M. M. (1985). Photosynthesis and dry matter production in C3 and C4
pastures plants, with special emphasis on tropical C3 legumes and C4
grasses. Australian Journal of Plant Physiology, 12(6): 557-572. https://
doi.org/10.1071/PP9850557
Martínez-López, R. (2017). Métodos estadísticos aplicados en Zootecnia. (1
a
ed.).
Etigraf.
Miranda, T., Machado, R., Machado, H. & Duquesne, P. (2007). Carbono
secuestrado en ecosistemas agropecuarios cubanos y su valoración
económica: Estudio de caso. Pastos y Forrajes, 30(4): 483-491. https://
www.redalyc.org/articulo.oa?id=269119701007
Miranda, T., Machado, R., Machado, H., Brunet, J. & Duquesne, P. (2008).
Valoración económica de bienes y servicios ambientales en dos
ecosistemas de uso ganadero. Zootecnia Tropical, 26(3): 187-189. http://
www.bioline.org.br/pdf?zt08025
Mora-Calvo, V. (2001). Fijación, emisión y balance de gases de efecto invernadero
en pasturas en monocultivo y en sistemas silvopastoriles de ncas
lecheras intensivas de las zonas altas de Costa Rica. [Tesis de Maestría,
Centro Agronómico Tropical de Investigación y Enseñanza, Escuela de
Posgrado, Turrialba]. http://www.sidalc.net/
Naranjo, J. F., Cuartas, C. A., Murgueitio, E., Chará, J. & Barahona, R. (2012).
Balance de gases de efecto invernadero en sistemas silvopastoriles
intensivos con Leucaena leucocephala en Colombia. Livestock Research
for Rural Development, 24(8): 8-24. http://www.lrrd.org/lrrd24/8/
nara24150.htm
R Core Team. (2020). A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. Recuperado el 10
de julio del 2020 de https://www.R-project.org/
Ramos-Veintimilla, R. (2003). Fraccionamiento del carbono orgánico del suelo
en tres tipos de uso de la tierra en ncas ganaderas de San Miguel de
Barranca, Puntarenas. Costa Rica [Tesis de Maestría, Centro Agronómico
Tropical de Investigación y Enseñanza, Escuela de Posgrado, Turrialba].
http://repositorio.iniap.gob.ec/handle/41000/836
Schmitt, A., Pausch, J. & Kuzyakov, Y. (2013). Effect of clipping and shading
on C allocation and uxes in soil under ryegrass and alfalfa estimated
by 14 C labelling. Applied Soil Ecology, 64: 228-236. doi: 10.1016/j.
apsoil.2012.12.015
Soto-Correa, J., Cambrón-Sandoval, V. & Renaud-Rangel, R. (2019). Atributos
de las especies arbóreas y su carbono almacenado en la vegetación del
municipio de Querétaro, México. Madera y Bosques, 25(1): e2511699.
https://doi.org/10.21829/myb.2019.2511699
Timoteo, K., Remuzgo, J., Valdivia, L., Sales-Dávila, F., García-Soria, D. &
Abanto-Rodríguez, C. (2016). Estimación del carbono almacenado en
tres sistemas agroforestales durante el primer año de instalación en el
departamento de Huánuco. Folia Amazónica, 25(1): 45-54. https://doi.
org/10.24841/fa.v25i1.382
Torres-Guerrero, C., Etchevers, J., Fuentes-Ponce, M., Govaerts, B., León-
González, F. & Herrera, J. (2013). Inuencia de las raíces sobre la
agregación del suelo. Terra Latinoamericana, 31(1): 71-84. https://www.
redalyc.org/articulo.oa?id=57327411007
Vela, G., López, J. & Rodríguez, M. (2012). Niveles de carbono orgánico total
en el Suelo de Conservación del Distrito Federal, centro de México.
Investigaciones Geográcas, 77: 18-30. https://www.redalyc.org/articulo.
oa?id=56923353003
Winslow, J. C., Hunt, E. R. & Pieper, S. C. (2003). The inuence of seasonal water
availability on global C3 versus C4 grassland biomass and its implications
for climate change research. Ecological Modelling, 163(1): 153-173. doi:
10.1016/S0304-3800(02)00415-5