This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Torres-Rodriguez et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e2239157-7 |
Chang, X., Dai, H.,Wang, D., Zhou, H., He, W., Fu, Y., Ibrahim, F., Zhou, Y.,
Gong, G., Shang, J., Yang, J.,Wu, X.,Yong, T., Song, C. and Yang, W.
(2018). Identication of Fusarium species associated with soybean root
rot in Sichuan Province, China.European Journal of Plant Pathology,
151(3), 563-577. https://doi.org/10.1007/s10658-017-1410-7
Chen, Z., Ou, P., Liu, L. and Jin, X. (2020). Anti-MRSA activity of actinomycin
X2 and collismycin a produced by Streptomyces globisporus WA5-
2-37 from the intestinal tract of American cockroach (Periplaneta
americana). Frontiers in Microbiology, 11, 555. https://doi.org/10.3389/
fmicb.2020.00555
Choi, H. W., Hong, S. K., Lee, Y. K., Kim, W. G. and Chun, S. (2018). Taxonomy
of Fusarium fujikuroi species complex associated with bakanae on
rice in Korea. Australasian Plant Pathology, 47(1), 23-34. https://doi.
org/10.1007/s13313-017-0536-6
Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for
identication of bacteria on clinical microbiology and infectious diseases.
Clinical Microbiology Reviews, 17(4), 840-862. https://doi.org/10.1128/
CMR.17.4.840-862.2004
Duarte Leal, Y., Echevarría Hernández, A. y Martínez Coca, B. (2016).
Identicación y caracterización de aislamientos de Fusarium spp.
presentes en garbanzo (Cicer arietinum L.) en Cuba. Revista de Protección
Vegetal, 31(3), 173-183. https://cutt.ly/qnva8A5
Duraipandiyan, V., Sasi, A. H., Islam, V. I. H.,Valanarasu, M. and Ignacimuthu,
S. (2010). Antimicrobial properties of actinomycetes from the soil of
Himalaya. Journal de Mycologie Medicale, 20(1), 15-20. https://doi.
org/10.1016/j.mycmed.2009.11.002
Gadhave, A. D., Patil, P. D., Dawale, M. B., Suryawnshi, A. P., Joshi, M. S.
and Giri, V. V. (2020). In-vitro Evaluation of different fungicides and
bioagents against Fusarium oxysporum f. sp. lycopersici. International
Journal of Current Microbiology and Applied Sciences, 9(8), 3576-3584.
https://doi.org/10.20546/ijcmas.2020.908.412
Gong, B., Chen, S., Lan, W., Huang, Y. and Zhu, X. (2018). Antibacterial and
antitumor potential of actinomycetes isolated from mangrove soil
in the Maowei Sea of the southern coast of China. Iranian Journal of
Pharmaceutical Research, 17(4), 1339-1346. https://doi.org/10.22037/
ijpr.2018.2280
Gopalakrishnan, S., Srinivas, V., Naresh, N., Pratyusha, S., Ankati, S.,
Madhuprakash, J., Govindaraj, M. and Sharma, R. (2021). Deciphering
the antagonistic effect of Streptomyces spp. and host-plant resistance
induction against charcoal rot of sorghum. Planta, 253(2), 1-12. https://
doi.org/10.1007/s00425-021-03577-5
Goudjal, Y., Toumatia, O.,Yekkour, A., Sabaou, N., Mathieu, F. and Zitouni, A.
(2014). Biocontrol of Rhizoctonia solani damping-off and promotion of
tomato plant growth by endophytic actinomycetes isolated from native
plants of Algerian Sahara. Microbiological Research, 169(1), 59-65.
https://doi.org/10.1016/j.micres.2013.06.014
Igarashi, M., Sawa, R., Umekita, M., Hatano, M., Arisaka, R., Hayashi, C.,
Ishizaki, Y., Suzuki, M. and Kato, C. (2021). Sealutomicins, new enediyne
antibiotics from the deep-sea actinomycete Nonomuraea sp. MM565M-
173N2. Journal of Antibiotics, 74,291-299. https://doi.org/10.1038/
s41429-020-00402-1
Intra, B., Mungsuntisuk, I., Nihira, T., Igarashi,Y. and Panbangred, W. (2011).
Identifcation of actinomycetes from plant rhizospheric soils with inhibitory
activity against Colletotrichum spp., the causative agent of anthracnose
disease. BMC Research Notes,4, 98. https://doi.org/10.1186/1756-0500-
4-98
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X:
Molecular evolutionary genetics analysis across computing platforms.
Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.
org/10.1093/molbev/msy096
Li, Y. T., Hwang, S. G., Huang, Y. M. and Huang, C. H. (2018). Effects of
Trichoderma asperellum on nutrient uptake and Fusarium wilt of
tomato. Crop Protection, 110, 275-282. https://doi.org/10.1016/j.
cropro.2017.03.021
Ling, L., Han, X., Li, X., Zhang, X.,Wang, H., Zhang, L., Cao, P., Wu, Y., Wang,
X., Zhao, J. and Xiang, W. (2020). A Streptomyces sp. NEAU-HV9:
Isolation, identication, and potential as a biocontrol agent against
Ralstonia solanacearum of tomato plants. Microorganisms, 8(3), 351.
https://doi.org/10.3390/microorganisms8030351
Maluin, F. N. and Hussein, M. Z. (2020). Chitosan-based agronanochemicals as a
sustainable alternative in crop protection. Molecules, 25(7), 1611. https://
doi.org/10.3390/molecules25071611
Marlatt, M. L., Correll, J. C., Kaufmann, P. and Cooper, P. E. (1996). Two
genetically distinct populations of Fusarium oxysporum f. sp. lycopersici
race 3 in the United States. Plant Disease, 80(12), 1336-1342. https://doi.
org/10.1094/PD-80-1336
Murugan, L., Krishnan, N.,Venkataravanappa, V., Saha, S., Mishra, A. K.,
Sharma, B. K. and Rai, A. B. (2020). Molecular characterization and race
identication of Fusarium oxysporum f. sp. lycopersici infecting tomato
in India. 3 Biotech, 10, 486. https://doi.org/10.1007/s13205-020-02475-z
Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R.,
Gupta, V. K., Yli-Mattila, T., Tsui, K. M., Srinivas, C., Niranjana, S.
R. and Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and
toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientic Reports,
6(1), 1-14. https://doi.org/10.1038/srep21367
Ochoa, J. L., Hernández-Montiel, L. G., Latisnere-Barragán, H., León de La Luz,
J. L. and Larralde-Corona, C. P. (2007). Isolation and identication of
pathogenic fungi from orange Citrus sinensis L. Osbeck cultured in Baja
California Sur, México. Ciencia y Tecnología Alimentaria, 5(5), 352-359.
https://doi.org/10.1080/11358120709487712
Okubara, P. A., Schroeder, K. L. and Paulitz, T. C. (2005). Real-time polymerase
chain reaction: applications to studies on soilborne pathogens.
Canadian Journal of Plant Pathology, 27(3), 300-313. https://doi.
org/10.1080/07060660509507229
Palla, M. S., Guntuku, G. S., Muthyala, M. K. K., Pingali, S. and Sahu, P. K.
(2018). Isolation and molecular characterization of antifungal metabolite
producing actinomycete from mangrove soil. Beni-Suef University
Journal of Basic and Applied Sciences, 7(2), 250-256. https://doi.
org/10.1016/j.bjbas.2018.02.006
Rathore, D. S., Sheikh, M., Gohel, S. and Singh, S. P. (2019). Isolation strategies,
abundance and characteristics of the marine actinomycetes of Kachhighadi,
Gujarat, India. Journal of the Marine Biological Association of India,
61(1), 71-78. http://dx.doi.org/10.6024/jmbai.2019.61.1.2028-11
Reyes-Pérez, J. J., Luna-Murillo, R. A., Reyes-Bermeo, M. R.,Vázquez-Morán,
V. F., Zambrano-Burgos, D. y Torres-Rodríguez, J. A. (2018). Efecto de
los abonos orgánicos sobre la respuesta productiva del tomate (Solanum
lycopersicum L). Revista de la Facultad de Agronomía de la Universidad
del Zulia, 35(1), 26-39. https://cutt.ly/bnvsmtW
Roncero, M. I., Di Pietro, A., Ruiz-Roldán, M. C., Huertas-González, M. D.,
Garcia-Maceira, F. I., Méglecz, E., Jiménez, A., Caracuel, Z., Sancho-
Zapatero, R., Hera, C., Gómez-Gómez, E., Ruiz-Rubio, M., González-
Verdejo, C. I. and Páez, M. J. (2000). Role of cell wall-degrading enzymes
in pathogenicity of Fusarium oxysporum. Revista Iberoamericana de
Micología, 17(1), S47-53.
Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C. and Phongpaichit, S.
(2017). Evaluation of antibacterial potential of mangrove sediment-
derived actinomycetes. Microbial Pathogenesis,1 12, 303-312. https://
doi.org/10.1016/j.micpath.2017.10.010
Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li,Y. and Chen, J. (2016).
Synergistic effect of Trichoderma-derived antifungal metabolites and
cell wall degrading enzymes on enhanced biocontrol of Fusarium
oxysporum f. sp. cucumerinum. Biological Control, 94, 37-46. https://doi.
org/10.1016/j.biocontrol.2015.12.001
Shen, T., Lei, Y., Pu, X., Zhang, S. and Du, Y. (2021). Identication and application
of Streptomyces microavus G33 in compost to suppress tomato bacterial
wilt disease.Applied Soil Ecology, 157, 103724. https://doi.org/10.1016/j.
apsoil.2020.103724
Shirling, E. B. and Gottlieb, D. (1966). Methods for characterization of
Streptomyces species. International Journal of Systematic and Evolutionary
Microbiology, 16(3), 313-340. https://doi.org/10.1099/00207713-16-3-
313
Singha, I. M., Kakoty, Y., Unni, B. G., Das, J. and Kalita, M. C. (2016).
Identication and characterization of Fusarium sp. using ITS and RAPD
causing fusarium wilt of tomato isolated from Assam, North East India.
Journal of Genetic Engineering and Biotechnology, 14(1), 99-105.
https://doi.org/10.1016/j.jgeb.2016.07.001
Sivakumar, T., Balabaskar,P. and Sanjeevkumar, K. (2018). Variability in Fusarium
oxysporum f. sp. lycopersici causing wilt of tomato. International Journal
of Chemical Studies, 6(2), 3655-3659. https://cutt.ly/bnvsBL6
Soldan, R., Mapelli, F., Crotti, E., Schnell, S., Daffonchio, D., Marasco, R., Fusi,
M., Borin, S. and Cardinale, M. (2019). Bacterial endophytes of mangrove
propagules elicit early establishment of the natural host and promote
growth of cereal crops under salt stress. Microbiological Research, 223,
33-43. https://doi.org/10.1016/j.micres.2019.03.008
Summerell, B. A., Salleh, B. and Leslie, J. F. (2003). A utilitarian approach to
Fusarium identication. Plant Disease, 87(2), 117-128. https://doi.
org/10.1094/PDIS.2003.87.2.117
Tamura, K. 1992. Estimation of the number of nucleotide substitutions when
there are strong transition-transversion and G+C-content biases.
Molecular Biology and Evolution, 9(4), 678-687. https://doi.org/10.1093/
oxfordjournals.molbev.a040752
Torres-Rodriguez, J. A., Reyes-Pérez, J. J.,Castellanos, T., Angulo, C., Quiñones-
Aguilar, E. E. and Hernandez-Montiel, L. G. (2021). A biopolymer
with antimicrobial properties and plant resistance inducer against
phytopathogens: Chitosan. Notulae Botanicae Horti Agrobotanici Cluj-
Napoca, 49(1), 1-15. https://doi.org/10.15835/nbha49112231
Vurukonda, S. S. K. P., Giovanardi, D. and Stefani, E. (2018). Plant growth
promoting and biocontrol activity of Streptomyces spp. as endophytes.
In International Journal of Molecular Sciences, 19(4), 952. https://doi.
org/10.3390/ijms19040952
Wang, X., Zhang, M.,Gao, J., Pu, T., Bilal, M.,Wang,Y. and Zhang, X. (2018).
Antifungal activity screening of soil actinobacteria isolated from
Inner Mongolia, China. Biological Control, 127, 78-84. https://doi.
org/10.1016/j.biocontrol.2018.07.007
White, T. J., Bruns, T., Lee, S. and Taylor, J. W. (1990). Amplication and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. Innis,
M.A., D.H. Gelfand, J. J. Sninsky and T.J. White (Ed.), PCR protocols:
a guide to methods and applications, (Vol. 18, pp. 315-322). Academic
Press,1990. Inc. New York. http://dx.doi.org/10.1016/B978-0-12-372180-
8.50042-1