© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: aobregonl@unmsm.edu.pe
Antonio José Obregón-La Rosa
1*
Eliana Contreras-López
1
Carlos Elías-Peñael
2
Ana María Muñoz-Jauregui
3
Ricardo Ángel Yuli-Posadas
1
Edwin Julio Cóndor-Salvatierra
4
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.11
Crop Production
Associate editor: Ing. Agr. MSc. Andreina Garcia
1
Escuela de Ciencia de los Alimentos, Facultad de Farmacia
y Bioquímica de la Universidad Nacional Mayor de San
Marcos, Lima, Perú.
2
Facultad de Industrias Alimentarias de la Universidad
Nacional Agraria La Molina, Lima, Perú.
3
Instituto de Ciencia de los alimentos y Nutrición de la
Universidad San Ignacio de Loyola, Lima, Perú.
4
Facultad de Ciencias de la Educación de la Universidad
Nacional de Huancavelica, Lima, Perú.
Received: 30-04-2021
Accepted: 27-10-2021
Published: 21-12-2022
Keywords:
Macroelements
Microelements
Fiber
Food composition
Vitamin C
Hylocereus spp
Nutritional and physicochemical prole of the pitahaya cultivated in the central coast of Peru
Perl nutricional y sicoquímico de la pitahaya cultivada en la costa central del Perú
Perl nutricional e físico-químico da pitahaya cultivada na costa central do Peru
Abstract
Pitahaya, known as “dragon fruit”, is an exotic fruit with excellent
nutritional properties; however, the species from the Peruvian coast have
been little studied. The objective of the present study was to determine the
physicochemical and nutritional composition of two species of pitahaya
Hylocereus undatus (Haw.) Britt and Rose (red pitahaya) and Hylocereus
megalanthus (yellow pitahaya), cultivated in the central coast of Peru.
Proximal analysis, physicochemical and mineral contents were determined
by standardized methods. From the results found, the ber content of red
pitahaya (4.30 ± 0.75 g.100 g
-1
) and vitamin C (14.74 ± 0.53 mg.100 g
-1
)
stand out. The macroelement with the highest proportion corresponded to
potassium (215.83 ± 11.72 and 98.41 ± 5.54 mg.100 g
-1
, for red and yellow
pitahaya, respectively). This was followed by phosphorus (28.70 ± 0.28
and 17.99 ± 1.48 mg.100 g
-1
, for red and yellow pitahaya, respectively) and
magnesium (29.88 ± 0.53 and 16.09 ± 2.80 mg.100 g
-1
, for red and yellow
pitahaya, respectively). Regarding the content of microelements, the contents
of manganese (5.48 ± 0.1 mg.kg
-1
) and zinc (5.39 ± 0.25 mg.kg
-1
) for red
pitahaya stood out; and in the case of yellow pitahaya, the highest values
corresponded to iron (21.07 ± 0.18 mg.kg
-1
) and manganese (7.49 ± 1.12
mg.kg
-1
). The study concluded that red and yellow pitahaya fruits represent
an important source of ber, minerals and vitamin C and they can be used for
the benet of human health and nutrition.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911. January - March. ISSN 2477-9407.
2-6 |
Resumen
La pitahaya, conocida como “fruta del dragón”, es un fruto exótico
con excelentes propiedades nutricionales; sin embargo, las especies
procedentes de la costa peruana han sido poco estudiadas. El objetivo
del presente estudio fue determinar la composición físico-química y
nutricional de dos especies de pitahaya: Hylocereus undatus (Haw.)
Britt y Rose (pitahaya roja) y Hylocereus megalanthus (pitahaya
amarilla), cultivadas en la costa central del Perú. Se determinó el
análisis proximal, físico-químico y el contenido de minerales, mediante
métodos estandarizados. De los resultados encontrados, destaca el
contenido de bra de la pitahaya roja (4.30 ± 0.75 g.100 g
-1
); así como
el de la vitamina C (14.74 ± 0.53 mg.100 g
-1
). El macroelemento en
mayor proporción correspondió al potasio (215.83 ± 11.72 y 98.41 ±
5.54 mg.100 g
-1
, para la pitahaya roja y amarilla, respectivamente).
Le siguen el fósforo (28.70 ± 0.28 y 17.99 ± 1.48 mg.100 g
-1
, para
pitahaya roja y amarilla, respectivamente) y el magnesio (29.88
± 0.53 y 16.09 ± 2.80 mg.100 g
-1
, para pitahaya roja y amarilla,
respectivamente). Respecto al contenido de microelementos, destaca
el contenido de manganeso (5.48 ± 0.1 mg.kg
-1
) y zinc (5.39 ± 0.25
mg.kg
-1
) para la pitahaya roja; y en el caso de la pitahaya amarilla,
los mayores valores correspondieron al hierro (21.07 ± 0.18 mg.kg
-1
)
y al manganeso (7.49 ± 1.12 mg.kg
-1
). Los frutos de pitahaya roja
y amarilla representan una fuente importante de bra, minerales y
vitamina C, beneciosa para la salud y la alimentación humana.
Palabras clave: macroelementos, microelementos, bra, composición
de los alimentos, vitamina C, Hylocereus spp.
Resumo
A Pitahaya, conhecida como “fruto do dragão”, é um fruto exótico
com excelentes propriedades nutricionais; contudo, as espécies da
costa peruana têm sido pouco estudadas. O objectivo do presente
estudo era determinar a composição físico-química e nutricional
de duas espécies de pitahaya Hylocereus undatus (Haw.) Britt e
Rose (pitahaya vermelha) e Hylocereus megalanthus (pitahaya
amarela), cultivadas na costa central do Peru. A análise proximal, o
conteúdo físico-químico e mineral foram determinados por métodos
padronizados. Dos resultados encontrados, destaca-se o teor de
bras de pitahaya vermelha (4.30 ± 0.75 g.100 g
-1
); bem como o de
vitamina C (14.74 ± 0.53 mg.100 g
-1
). O macroelemento em maior
proporção correspondeu ao potássio (215.83 ± 11.72 e 98.41 ± 5.54
mg.100 g
-1
, para o pitahaya vermelho e amarelo, respectivamente). É
seguido pelo fósforo (28.70 ± 0.28 e 17.99 ± 1.48 mg.100 g
-1
, para
pitahaya vermelha e amarela, respectivamente) e magnésio (29.88 ±
0.53 e 16.09 ± 2.80 mg.100 g
-1
, para pitahaya vermelha e amarela,
respectivamente). Relativamente ao conteúdo de microelementos,
o conteúdo de manganês (5.48 ± 0.1 mg.kg
-1
) e zinco (5.39 ± 0.25
mg.kg
-1
) destaca-se para o pitahaya vermelho; e no caso do pitahaya
amarelo, os valores mais elevados corresponderam ao ferro (21.07
± 0.18 mg.kg
-1
) e ao manganês (7.49 ± 1.12 mg.kg
-1
). O estudo
concluiu que as frutas pitahaya vermelhas e amarelas representam
uma importante fonte de bras, minerais e vitamina C e podem ser
utilizadas em benefício da saúde humana e da nutrição.
Palavras-chave: macroelementos, microelementos, bra,
composição de alimentos, vitamina C, Hylocereus spp.
Introduction
The pitahaya (Hylocereus
spp.), is an exotic fruit, native to
Central America and the Peruvian jungle (Verona-Ruiz
et al., 2020).
Recently,
it
is
considered
as
a
protable
exotic
fruit
crop,
suitable
for
large-
scale cultivation in dry lands, as it has the ability to retain water in
drought conditions (de Oliveira
et al., 2020).
Depending on the species, the fruits may present characteristics
that
differentiate
them,
as
the
shape,
presence
of
spines;
pericarp
and pulp color, reecting a high genetic variability (Junqueira et al.,
2010). There are 14 species of Hylocereus spp. reported in the world,
but
only
four
of
them
are
commercially
cultivated:
H.
undatus,
H.
monocanthus, H. costariscensis and H. megalanthus (Abirami et al.,
2021).
Therefore,
pitahaya
is
a
promising
tropical
fruit
given
its
adaptation and cultivation in different parts of the world. Its benets
for
the
human
health
are
due
to
its
content
of
essential
nutrients
such
as
vitamins,
minerals,
complex
carbohydrates,
dietary
ber
and antioxidants. Pitahaya is an essential source of betacyanin, a red
pigment with antioxidant properties (Abirami
et al., 2021). This has
driven its popularity, attracting the worldwide attention, being widely
used
for
its
functional
and
organoleptic
characteristics
and
for
its
commercial value (Abirami
et al., 2021; Verona-Ruiz
et al., 2020).
Although
pitahaya
has
increased
in
popularity,
the
knowledge
about
its
nutrients
supply,
particularly
of
the
commercial
species
that grow in the Peruvian coastal desert, has been little studied. The
widely cultivated species is Hylocereus megalanthus. In this sense,
Obregón-
La
Rosa
et
al.
(2021)
studied
the
proximal
analysis
of
this species, cultivated in the jungle of Peru; and Chauca Aguilar &
Chávez
Quintana
(2020)
reported
the
maturity
index
of
the
same
species native to the Amazon region of Peru and Brazil. Regarding to
the Hylocereus undatus (Haw.) species, Britt and Rose, no reports of
the fruits grown in Peru were found. Therefore, in the present research
the
proximal
composition
and
physicochemical
and
nutritional
characteristics of two species of pitahaya: Hylocereus undatus (Haw.)
Britt
and
Rose
(red
pitahaya)
and
Hylocereus
megalanthus
(yellow
pitahaya) cultivated in the Peruvian coastal desert were determined
and their potential for the benet of health and human nutrition was
determined,
in
order
to
provide
knowledge
about
these
varieties
cultivated in Peru.
Materials and methods
Plant material
The pitahaya fruits came from the farm of Corporación Abregú,
located in the Granados section, Esperanza Baja, province of Huaral,
department of Lima, Peru; whose geographical coordinates are Latitude
-11.416
and
Longitude
-77.234.
The
farm
is
located
in
the
central
coastal area of Peru, at 246.4 mamsl, average annual temperature of
18.3 °C, average annual rainfall of 10 mm and 83.8% average relative
humidity per year. The species studied were red pitahaya and yellow
pitahaya. Five lots of 10 kg of fruit were randomly selected for each
species from the plants with the best phenotype, expressing the results
as the mean of each lot (n=5).
Samples preparation
The
fruits
analyzed
corresponded
to
a
stage
of
maturity
for
consumption,
established
in
the
ICONTEC
standard
(1996).
The
fruits
were
washed,
grounded,
freeze-dried
and
stored
at
-
20
°C
for
their
respective
analyses.
Subsequently,
they
were
identied
by
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Obregón-La Rosa et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911
3-6 |
specialists from the Universidad Nacional Mayor de San Marcos,
Lima-Peru (table 1).
Table 1. Scientic names and varieties of the analyzed fruits.
Scientic name Common name Family References
Hylocereus undatus
(Harwoth) Britton and
Rose
Pitahaya roja ta-
sajo, pitaya, or
de caliz, pitajava
Cactaceae
(Gunasena et al.,
2006).
Selenicereus megalan-
thus or Hylocereus me-
galanthus (K. Schum.
ex Vaupel) Moran
Pitahaya, pitaya
amarilla, pitaia
Cactaceae
(Sanín et al., 2020).
Proximal analysis
The proximate analysis was evaluated according to the methods
described by AOAC (1995). Water content was determined by the
conventional method, drying the sample in an oven at 105 °C for
approximately 4 hours until constant mass. Protein was determined
by the Kjeldahl method (the factor used was 6.25). Fiber content was
determined by the gravimetric method after acid hydrolysis of the
samples. The Soxhlet extraction method was used to quantify the
content of fatty ether extract, using petroleum ether as solvent. The
ash content was determined by incineration in a mufe at 550 °C ±
15 °C, and the carbohydrates were obtained by difference, subtracting
from 100 the content of water, protein, ber, fat and ash.
Physicochemical analysis
Soluble solids were measured with a refractometer (ALLA
FRANCE, 0-32) at 20 °C and the results were expressed as °Brix.
Total acidity was determined by titration, using a potentiometer
(TRANS Instruments brand, TI 9000 Model, Singapore) with a 0.1
M NaOH solution and expressed as a percentage of citric acid. The
maturity index was obtained by dividing soluble solids by total acidity
(AOAC, 1995). Total sugars were determined by the modied Dubois
spectrophotometric method, which is a colorimetric method based
on the ultraviolet absorption of furfural derivatives produced by the
hydrolysis of concentrated sulfuric acid (Albalasmeh et al., 2013).
Determination of the mineral content
For the determination of the mineral content, the AOAC (1995)
method was used. The samples were incinerated in a mufe at 550
°C and the ashes obtained were dissolved in 10 mL of 50 % HCl
(v/v). Mineral extracts were measured using an atomic absorption
spectrophotometer (Perkin Elmer, 3030-B model, USA). A
standard calibration curve and a respective control were prepared
for each mineral. Phosphorus content was measured using the
spectrophotometric technique with molybdenum blue.
Determination of vitamin C content
The determination of vitamin C was carried out using the modied
2.6 dichlorophenol indophenol titration method (AOAC, 1995). For
the extraction of ascorbic acid, a 4% (m/v) solution of oxalic acid was
used, as recommended by Benassi & Antunes (1988). This solution
was titrated with a 0.01 % 2.6-dichloro-phenol-indophenol solution.
The endpoint was considered when the solution turns to a faint pink
color for 15 s. The results were expressed in mg of ascorbic acid
equivalents per 100 g of sample.
Design and statistical analysis
A completely randomized design (CRD) was used, whose linear
additive model is:
Y
ij
= μ + τ
i
+ ε
ij
Where: Y
ij
represents the response variable obtained by applying
the treatment (content of each component) i in the j-th experimental
unit (pitahaya species); μ is the effect of the general mean; τ
i
represents
the effect of the i-th treatment and ε
ij
is the experimental error obtained
by applying treatment i in the j-th experimental unit. The results were
analyzed using a one-way analysis of variance, with a signicance
level of p < 0.05; differences between means were evaluated using
Tukey’s test. Minitab software version 18 was used (Minitab, 2018).
Results and discussion
Table 2 shows the results of the proximal evaluation of the fruits
studied.
Table 2. Proximal evaluation of Pitahaya (Hylocereus) native to
the central coast of Peru.
Red pitahaya
(Hylocereus undatus)
Yellow pitahaya
(Hylocereus megalan-
thus)
Wet basis
g.100 g
-1
sample
Dry basis
g.100 g
-1
dry
sample
Wet basis
g.100 g
-1
sample
Dry basis
g.100 g
-1
dry
sample
Total solids 15.85 ± 0.55
a
15.54 ± 0.71
a
Water 84.15 ± 0.55
a
84.46 ± 0.71
a
Total protein* 0.12 ± 0.03
a
0.76 ± 0.16
b
0.22 ± 0.07
a
1.44 ± 0.47
c
Ether extract 0.72 ± 0.04
a
4.54 ± 0.28
b
0.41 ± 0.08
a
2.63 ± 0.42
c
Ash 0.57 ± 0.05
a
3.62 ± 0.30
b
0.56 ± 0.04
a
3.63 ± 0.28
b
Crude Fiber 4.30 ± 0.75
bc
27.13 ± 4.72
a
1.27 ± 0.08
c
8.17 ± 0.54
b
Carbohydrates 10.14 ± 1.06
c
63.94 ± 6.67
a
13.07 ± 0.66
c
84.13 ± 4.28
b
Caloric value
(Kcal)
47.50 ± 4.07
a
56.86 ± 2.67
a
1
Mean value ± standard deviation of fresh weight; n=5; *Protein factor=6.25
a, b, c
Means with different letters differ signicantly (p ˂ 0.05).
With regard to the moisture content, red (84.15 ± 0.55 g.100 g
-1
)
and yellow (84.46 ± 0.71 g.100 g
-1
) pitahaya fruits from the central
Peruvian coast were found within the range (82.3-89.4 g.100 g
-1
sample) of moisture of pitahaya fruits grown in tropical areas,
reported by Mercado-Silva (2018), Obregón-La Rosa et al. (2021),
Cañar et al. (2014), Menezes-Cordeiro et al. (2015), Morales de León
et al. (2015) and Gunasena et al. (2006).
Regarding to the total protein content, the results for red and
yellow pitahaya (0.12 ± 0.03 and 0.22 ± 0.07 g.100 g
-1
, respectively)
were slightly lower than those reported by Obregón-La Rosa et al.
(2021) for native pitahaya fruits (Selenicereus megalanthus) from
the Peruvian jungle (0.5 g.100 g
-1
). This difference could be due to
the origin of the fruit, the maturity stage and the harvest conditions,
among others.
Ether extract (fat) values of 0.72 ± 0.04 and 0.41 ± 0.08 g.100 g
-1
were found for red and yellow pitahaya, respectively, which were
higher than those reported by Mercado-Silva (2018), for pitahaya
fruits from Brazil (of 0.1 g.100 g-1). On the other hand, Jaafar et
al. (2009), studied the proximal composition of red pulp pitahaya of
Hylocereus spp. species from Malaysia, nding fat values in the range
of 0.21 to 0.61 g.100 g
-1
, slightly lower than those obtained in the
present study (0.72 ± 0.04 g. 100 g
-1
).
Regarding to the ash content (0.57 ± 0.05 and 0.56 ± 0.04
g.100 g
-1
sample, for red and yellow pitahaya, respectively), the
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911. January - March. ISSN 2477-9407.
4-6 |
values obtained were within the range of pitahaya fruits grown in
tropical zones (0.32-0.60 g.100 g
-1
sample) reported by Mercado-
Silva (2018), Obregón-La Rosa et al. (2021), Cañar et al. (2014),
Menezes-Cordeiro et al. (2015), Morales de León et al. (2015) and
Gunasena et al. (2006).
The ber content of red pitahaya (4.30 ± 0.75 g.100 g-1)
was statistically signicant (p ˂ 0.05), higher than that of yellow
pitahaya (1.27 ± 0.08 g.100 g
-1
). In this regard, Menezes-Cordeiro
et al. (2015), found mean crude ber values of 11.5 g.100 g
-1
, higher
than those obtained in the present study, for red pulp pitahaya
(Hylocereus polyrhizus) varieties from Brazil. On the other hand,
Sato et al. (2014), reported ber values for red pulp pitahaya of the
Hylocereus costaricences variety that varied between 1.84 and 2.0
g.100 g
-1
, lower than those found in the present study (4.30 ± 0.75 g.
100 g
-1
), probably due to the variety and maturity stage of the fruit
(Sanín et al., 2020).
The ber content of yellow pitahaya was higher than that
reported (1.27 ± 0.08 g.100 g
-1
) by Obregón-La Rosa et al. (2021)
(0.3 g.100 g
-1
) who evaluated the proximal composition of the
yellow pitahaya (S. megalanthus) from the Peruvian jungle.
The carbohydrate content of the red pitahaya (10.14 ± 1.06 g.100
g
-1
) and yellow pitahaya (13.07 ± 0.66 g.100 g
-1
) were found within
the range (9.1-13.55 g.00 g
-1
) of the pitahayas from tropical areas,
reported by Mercado-Silva (2018), Obregón-La Rosa et al. (2021),
Cañar et al. (2014), Menezes-Cordeiro et al. (2015), Morales de
León et al. (2015) and Gunasena et al. (2006).
Regarding to the caloric intake (47.50 and 56.86 kcal.100 g
-1
,
for red and yellow pitahaya, respectively), this fruit presents low
levels. Reduced caloric intake is associated with a lower risk of
cardiovascular disease, cancer, cognitive impairment and better
quality of life (Pistollato et al., 2020). Table 3 presents the results
obtained from physicochemical analyses of pitahaya (Hylocereus
spp.)
Table 3. Physicochemical analysis of pitahaya (Hylocereus spp.)
from the central coast of Peru.
Red pitahaya
(Hylocereus undatus)
(Wet basis)
Yellow pitahaya
(Hylocereus megalanthus)
( Wet basis)
Vitamin C (mg.100 g
-1
) 14.74± 0.53
a
11.34 ± 0.71
b
Total sugars (g.100 g
-1
) 10.96 ± 1.53
a
13.52 ± 0.98
b
Total acidity
(g.100 g
-1
) (ATT)
0.26 ± 0.04
a
0.23 ± 0.06
a
pH 4.16 ± 0.17
a
4.82 ± 0.31
b
Soluble solids (°Brix)
(SST)
13.83 ± 0.24
a
16.70 ± 0.19
b
Maturity Index (SST/
ATT)
53.17 ± 7.12
a
76.47 ± 16.06
b
1
Mean value ± standard deviation of fresh weight; n = 5;
a,b
With different letters are signicantly different (p ˂ 0.05).
Vitamin C levels of red pitahaya (14.74 ± 0.53 mg.100 g
-1
) were
statistically different (p ˂ 0.05) and higher than those of yellow
pitahaya (11.34 ± 0.71 mg.100 g
-1
). These values are within the
range of 4.0 - 25.8 mg.100 g
-1
, in pitahaya grown in tropical areas,
reported by Mercado-Silva (2018), Obregón-La Rosa et al. (2021),
Cañar et al. (2014), Menezes-Cordeiro et al. (2015), Morales de
León et al. (2015) and Gunasena et al. (2006). Jaafar et al. (2009),
analyzed fruits of Hylocereus polyrhizus with red peel and pulp,
nding vitamin C values (8 - 9 mg.100 g
-1
) lower than those found
in the present study.
It should be noted that the vitamin C values found for red pitahaya
are higher than those of other fruits native to the Andean region
such as: chirimoya (Annona cherimola) (3.3 mg.100 g
-1
), coco
(Cocos nucifera) (0.9 mg.100 g
-1
), cocona (Solanum sessiliorum)
(4.4 mg.100 g
-1
), granada (Punica granatum) (5.2 mg.100 g
-1
),
guayaba (Psidium guajava) (7.0 mg.100 g
-1
), higo (Ficus carica)
(2.9 mg.100 g
-1
), lúcuma (Lucuma pouteria) (2.2 mg.100 g
-1
) and
níspero (Eriobotrya japonica) (1.2 mg.100 g
-1
), among other fruits
of the region (Reyes et al., 2017).
According to Fuster & Marín (2007), the recommended daily
requirement of vitamin C for adults varies from 45 to 90 mg.day
-1
.
Therefore, the consumption of 100 grams of red pitahaya would
provide between 17 to 33% of the daily requirement and the
contribution of yellow pitahaya between 13 to 25% of the daily
requirement, in adults.
The total sugars content of yellow pitahaya (13.52 ± 0.98 g.100 g
-1
sample) was signicantly higher (p ˂ 0.05) than red pitahaya (10.96
± 1.53 g.100 g
-1
sample). Wall & Khan (2008), studied Hylocereus
spp. clones and found glucose and fructose as major sugars. Total
sugar concentrations ranged from 10.1 to 8.9 g.100 g
-1
, lower than
those obtained in this research. On the other hand, Nerd et al. (1999)
found total sugar values ranging from 8 to 9 g.100 g
-1
of sample for
fruits of Hylocereus undatus and Hylocereus polyrhizus from Israel,
slightly lower than those reported in the present study.
Regarding to total acidity of pitahaya fruits, there were no
signicant statistical differences (p ˂ 0.05), between both varieties,
and the values obtained were higher than those reported by Lima
et al. (2013), who found total acidity values ranging from 0.09 to
0.17 g citric acid.100 g
-1
of sample for Selenicereus megalanthus,
Selenicereus setaceus, Hylocereus undatus and Hylocereus
costaricensis pitahaya varieties.
Regarding to pH levels, Lima et al. (2013) reported values from
4.80 to 5.67 for pitahaya fruits of the varieties noted above, similar
to those found in the present study (4.16 and 4.82) for red and
yellow pitahaya, respectively.
Regarding to soluble solids content, Mercado-Silva (2018),
Obregón-La Rosa et al. (2021), Cañar et al. (2014), Menezes-
Cordeiro et al. (2015), Morales de León et al. (2015) and Gunasena
et al. (2006) reported different values (11-16.2 g.100 g
-1
), which are
directly related to fruit maturity stage. In the present study, mean
soluble solids values (16.70 ± 0.19 g.100 g
-1
) were found for the
yellow variety, signicantly higher (p ˂ 0.05) than the red variety
(13.83 ± 0.24 g.100 g
-1
), slightly lower than those reported by
Torres-Grisales et al. (2017), who found soluble solids levels for the
Selenicereus megalanthus variety of 17.67 ± 0.06 g.100 g
-1
sample.
The maturity index values (53.17 ± 7.12 and 76.47 ± 16.06, for
red and yellow pitahaya, respectively) determined from the ratio
between soluble solids and total acidity, resulted lower than those
reported by Obregón-La Rosa et al. (2021) of 168, mainly due to
the origin and maturity stage of the fruit after harvest (Sanín et al.,
2020). In the case of yellow pitahaya, Chauca-Aguilar & Chávez-
Quintana (2020) reported maturity index values of 87 and 73.91, for
varieties from the Amazon region of Peru and Brazil, respectively.
Table 4 shows the macro and microelement mineral content of
red and yellow pitahaya fruits.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Obregón-La Rosa et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911
5-6 |
Table 4. Mineral content in red Pitahaya (Hylocereus undatus) and yellow Pitahaya (Hylocereus megalanthus) from the central coast of
Peru.
Red pitahaya
(Hylocereus undatus)
Yellow pitahaya
(Hylocereus megalanthus)
Wet basis
Dry basis Wet basis Dry basis
Macrominerals
Phosphorus (mg.100 g
-1
)
28.70 ± 0.28
a
181.05 ± 1.79
c
17.99 ± 1.48
ab
115.75 ± 9.51
bc
Potassium (mg.100 g
-1
)
215.83 ± 1.72
c
1361.70 ± 73.97
a
98.41 ± 5.54
d
633.27 ± 35.66
b
Calcium (mg.100 g
-1
)
20.10 ± 0.92
c
126.80 ± 5.81
a
11.73 ± 0.99
b
75.47± 6.36
d
Magnesium (mg.100 g
-1
)
29.88 ± 0.53
ab
188.50 ± 3.32
c
16.09 ± 2.80
a
103.53 ± 18.00
bc
Sulfur (mg.100 g
-1
)
13.64 ± 0.45
ab
86.07 ± 2.83
c
12.14 ± 1.44
a
78.119.26
bc
Sodium (mg.100 g
-1
)
1.52 ± 0.10
a
9.56 ± 0.61
b
1.43 ± 0.28
b
9.20± 1.82
a
Microminerals
Zinc (mg.kg
-1
)
5.39 ± 0.25
ab
34.00 ± 1.58
c
4.35 ± 0.31
a
28.00 ± 2.00
bc
Copper (mg.kg
-1
)
0.82 ± 0.13
c
5.20 ± 0.84
b
1.34 ± 0.18
c
8.60 ± 1.14
a
Manganese (mg.kg
-1
)
5.48 ± 0.18
a
34.60 ± 1.14
bc
7.49 ± 1.12
ab
48.20 ± 7.22
a
Iron (mg.kg
-1
)
1.24 ± 0.28
a
7.80 ± 1.79
ab
21.07 ± 0.18
bc
135.60 ± 1.14
c
1
Mean value ± standard deviation of fresh weight; n = 5;
a, b, c
Means within a row with different letters are signicantly different (p ˂ 0.05).
The macroelement found in higher proportion corresponded to
potassium (215.83 ± 11.72 and 98.41 ± 5.54 mg.100 g
-1
, for red and
yellow pitahaya, respectively. It was followed in higher proportion
by phosphorus (28.70 ± 0.28 and 17.99 ± 1.48 mg.100 g
-1
, for
red and yellow pitahaya, respectively), and magnesium (29.88 ±
0.53 and 16.09 ± 2.80 mg.100 g
-1
, for red and yellow pitahaya,
respectively), similar to the results of Leterme et al. (2006) in a
study about the mineral content of the tropical fruits from the Andes
of Colombia, nding that potassium (36 1.782 mg.100 g
-1
) is the
mineral in higher proportion of the fruits of chirimoya (Anonna
cherimola Miller), carambola (Averrhoa carambola L.), tomate del
árbol (Cyphomandra betacea (Cav.) Sendtn), mamey (Mammea
americana L.), among others, which is related to what was found
in the present study.
Regarding to the content of mineral microelements for pitahaya
fruits, the content of manganese (5.48 ± 0.1 mg.kg
-1
) and zinc (5.39
± 0.25 mg.kg
-1
) for red pitahaya stand out; and in the case of the
yellow pitahaya, the highest values corresponded to iron (21.07 ±
0.18 mg.kg
-1
) and manganese (7.49 ± 1.12 mg.kg
-1
). Juárez-Cruz
et al. (2012), found important values of the minerals of zinc and
potassium (34.02 mg.kg
-1
and 4.82 g.100 g
-1
, expressed on a dry
basis, respectively), for tender stems of the Hylocereus undatus
variety from Mexico.
The yellow pitahaya in micronutrients provides 19.14 % of
the recommended average daily intake (IA) of copper in adults,
26.81 % of manganese in adult women and 26.34 % of iron in adult
men (Food and Nutrition Board, Institute of Medicine, 2000). On
the other hand, Menezes-Cordeiro et al. (2015) determined the
content of micro and macronutrients of the red pitahaya Hylocereus
polyrhizus variety, nding values expressed on a dry basis, similar
to those of the present study in terms of macronutrients, such as
phosphorus (230 mg.100 g
-1
), potassium (1260 mg.100 g
-1
) and
sulfur (100 mg.100 g
-1
); however, in the case of the micronutrients
such as iron (337.58 mg.kg
-1
) and zinc (116.20 mg.kg
-1
) the values
were much higher than those of the present study.
Conclusions
The red and yellow pitahaya fruits grown in the Peruvian coastal
desert are an important source of nutrients such as ber, vitamin
C, and minerals (potassium, phosphorus, magnesium, manganese,
zinc, and iron).
The red pitahaya has a higher content of ber, vitamin C and
zinc, but it has a lower content in total sugars and iron, compared to
the yellow pitahaya.
Pitahaya fruits from the central Peruvian coast differ in total
protein, fat and ber content compared to pitahaya fruits from
tropical regions.
Acknowledgments
To the Vice Rectorate of Research of the Universidad Nacional
Mayor de San Marcos, for nancing the project: “Nutritional and
bioactive compounds of pitahaya (Selenericeus megalanthus) and
its uses and applications in the food industry”. Likewise, the Abregú
Corporation is thanked for the support provided.
Cited literature
Abirami, K., Swain, S., Baskaran, V., Venkatesan, K., Sakthivel, K., &
Bommayasamy, N. (2021). Distinguishing three Dragon fruit
(Hylocereus spp.) species grown in Andaman and Nicobar Islands
of India using morphological, biochemical and molecular traits.
Scientic Reports, 11(1), 2894. https://doi.org/10.1038/s41598-
021-81682-x
Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new
method for rapid determination of carbohydrate and total carbon
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223911. January - March. ISSN 2477-9407.
6-6 |
concentrations using UV spectrophotometry. Carbohydrate
Polymers, 97(2), 253-261. https://doi.org/https://doi.org/10.1016/j.
carbpol.2013.04.072
Association of Ofcial Agricultural Chemists (AOAC). (1995). Ofcial
Methods of Analysis of the AOAC International (16th ed.).
Arlington, VA, EE.UU. AOAC.
Benassi, M.D.T., & Antunes, A.J. (1988). A Comparison of metaphosphoric
and oxalic acids as extractants solutions for the determination
of vitamin C in selected vegetables. Arquivos de Biologia e
Tecnologia, 31(4), 507-513.
Cañar, Y., Caetano, M., & Bonilla-Morales, M. (2014). Caracterización
sicoquímica y proximal del fruto de pitahaya amarilla
[Selenicereus megalanthus (K. Schum. Ex Vaupel) Moran]
cultivada en Colombia. Revista Agronomía, 22 (1 ), 77-87. http://
vip.ucaldas.edu.co/agronomia/downloads/Agronomia22(1)_8.pdf
Chauca Aguilar, M., & Chávez Quintana, S. G. (2020). Fenoles y capacidad
antioxidante de Psidium guajava, Vaccinium myrtillus, Selenicereus
megalanthus y Physalis peruviana de diferentes procedencias.
Bioagro, 32(3), 225-230. https://revistas.uclave.org/index.php/
bioagro/article/view/2790
de Oliveira, M. M. T., Shuhua, L., Kumbha, D. S., Zurgil, U., Raveh, E., &
Tel-Zur, N. (2020). Performance of Hylocereus (Cactaceae) species
and interspecic hybrids under high-temperature stress. Plant
Physiology and Biochemistry, 153, 30-39. https://doi.org/10.1016/j.
plaphy.2020.04.044
Food and Nutrition Board (FNB), Institute of Medicine (IOM). (2000).
Dietary Reference Intakes for vitamin C, vitamin E, selenium and
carotenoids. National Academy Press, Washington, D.C. https://
doi.org/10.1016/s0899-9007(00)00596-7
Fuster, G. O., & Marín, M. G. (2007). Actualización en requerimientos
nutricionales. Endocrinología y Nutrición, 54 (1), 17-29. https://
doi.org/10.1016/S1575-0922(07)71523-1
Gunasena, H. P. M., Pushpakumara, D. K. N. G., & Kariyawasam, M.
(2006). Dragon fruit-Hylocereus undatus (Haw) Britton and Rose:
a fruit for the future. Sri Lanka Council For Agricultural Policy,
Wijerama Mawatha, Colombo 7; Sri Lanka.
Instituto Colombiano de Normas Técnicas y Certicaciones - ICONTEC.
(1996). Norma técnica colombiana 3554: Frutas frescas, pitahaya
amarilla. NTC, Bogotá, Colombia.
Jaafar, R. A., Rahman, A. R. B. A., Mahmod, N. Z. C., & Vasudevan, R.
(2009). Proximate Analysis of Dragon Fruit (Hylocereus polyhizus).
American Journal of Applied Sciences, 6(7), 1341-1346. https://
doi.org/10.3844/ajassp.2009.1341.1346
Junqueira, K. P., Faleiro, F. G., Bellon, G., Junqueira, N. T. V., Fonseca, K. G.
d., Lima, C. A. d., & Santos, E. C. d. (2010). Variabilidade genética
de acessos de pitaya com diferentes níveis de produção por meio de
marcadores RAPD. Revista Brasileira de Fruticultura, 32(3), 840-
846. https://doi.org/10.1590/S0100-29452010005000107
Juárez-Cruz, A., Livera-Muñoz, M., Sosa-Montes, E., Goytia-Jiménez,
M., González-Hernández, V. A., & Bárcena-Gama, R. (2012).
Composición química de tallos inmaduros de Acanthocereus spp.
e Hylocereus undatus (Haw.) Britton & Rose. Revista totecnia
mexicana, 35(2), 171-175. https://doi.org/10.35196/rfm.2012.2.171
Leterme, P., Buldgen, A., Estrada, F., & Londoño, A. M. (2006). Mineral
content of tropical fruits and unconventional foods of the Andes
and the rain forest of Colombia. Food Chemistry, 95(4), 644-652.
https://doi.org/10.1016/j.foodchem.2005.02.003
Lima, C. A. D., Faleiro, F. G., Junqueira, N. T. V., Cohen, K. D. O., &
Guimarães, T. G. (2013). Características físico-químicas, polifenóis
e avonoides amarelos em frutos de espécies de pitaias comerciais
e nativas do cerrado. Revista Brasileira de Fruticultura, 35(2),
565-570. https://doi.org/10.1590/s0100-29452013000200027
Menezes Cordeiro, M. H., Mendes Da Silva, J., Polete Mizobutsi, G., Hiydu
Mizobutsi, E., & Ferreira Da Mota, W. (2015). Physical, chemical
and nutritional characterization of pink pitaya of red pulp. Revista
Brasileira de Fruticultura, 37(1), 20-26. https://doi.org/https://doi.
org/10.1590/0100-2945-046/14
Mercado-Silva, E. M. (2018). Pitaya—Hylocereus undatus (Haw). Exotic
fruits, 339-349. http://dx.doi.org/10.1016/B978-0-12-803138-
4.00045-9.
Minitab, L. L. C. (2018). Minitab 18. Minitab Inc. Pennsylvania, USA.
Morales de León, J., Bourges, R.H., & Camacho, P. (2015). Tablas
de composición de alimentos y productos alimenticios. CIA.
Periodística S.A DE C.V. México. https://www.incmnsz.mx/2019/
TABLAS_ALIMENTOS.pdf
Nerd, A., Gutman, F., & Mizrahi, Y. (1999). Ripening and postharvest
behaviour of fruits of two Hylocereus species (Cactaceae). Journal
of Postharvest Biology and Technology, 17(1), 39-45. https://doi.
org/10.1016/S0925-5214(99)00035-6
Obregón-La Rosa, A. J., Augusto Elías-Peñael, C. C., Contreras-López,
E., Arias-Arroyo, G. C., & Bracamonte-Romero, M. (2021).
Características sicoquímicas, nutricionales y morfológicas de
frutas nativas. Revista de Investigaciones Altoandinas, 23(1), 17-
25. http://dx.doi.org/10.18271/ria.2021.202
Pistollato, F., Forbes-Hernandez, T. Y., Iglesias, R. C., Ruiz, R.,
Elexpuru Zabaleta, M., Dominguez, I., Cianciosi, D., Quiles,
J. L., Giampieri, F., & Battino, M. (2020). Effects of caloric
restriction on immunosurveillance, microbiota and cancer cell
phenotype: Possible implications for cancer treatment. Seminars
in Cancer Biology. https://doi.org/https://doi.org/10.1016/j.
semcancer.2020.11.017
Reyes, M., Gómez, I., y Espinoza, C. (2017). Tablas peruanas de
composición de alimentos. Lima, Perú: Instituto Nacional de Salud.
https://repositorio.ins.gob.pe/xmlui/bitstream/handle/INS/1034/
tablas-peruanas-QR.pdf?sequence=3&isAllowed=y
Sanín, A., Navia, D. P., & Serna-Jiménez, J. A. (2020). Functional Foods
from Crops on the Northern Region of the South American Andes:
The Importance of Blackberry, Yacon, Açai, Yellow Pitahaya and
the Application of Its Biocompounds. International Journal of
Fruit Science, 20(3),1784-1804. https://doi.org/10.1080/1553836
2.2020.1834894
Sato, S. T. A., Ribeiro, S. D. C. A., Sato, M. K., & Souza, J. N. S. (2014).
Caracterização física e físico-química de pitayas vermelhas
(Hylocereus costaricensis) produzidas em três municípios
paraenses.
Torres Grisales, Y., Melo Sabogal, D. V., Torres-Valenzuela, L., Serna-
Jiménez, J., & Sanín Villarreal, A. (2017). Evaluation of bioactive
compounds with functional interest from yellow pitahaya
(Selenicereus megalanthus Haw). Revista Facultad Nacional de
Agronomía Medellín, 70(3), 8311-8318. https://doi.org/10.15446/
rfna.v70n3.66330
Verona-Ruiz, A., Urcia-Cerna, J., & Paucar-Menacho, L. M. (2020).
Pitahaya (Hylocereus spp.): Cultivo, características sicoquímicas,
composición nutricional y compuestos bioactivos. Scientia
Agropecuaria, 11(3), 439-453. http://dx.doi.org/10.17268/sci.
agropecu.2020.03.16
Wall, M. M., & Khan, S. A. (2008). Postharvest quality of dragon fruit
(Hylocereus spp.) after X-ray irradiation quarantine treatment.
HortScience, 43(7), 2115-2119. https://doi.org/10.21273/
HORTSCI.43.7.2115