This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223909. January - March. ISSN 2477-9407.
6-6 |
the rest of the variables for not providing relevant classicatory
information. It is recommended to apply this multivariate statistical
model with a greater diversity of sgRNAs, to obtain other
discriminant functions or to corroborate the weight of the function
predicted here.
Conclusions
Optimal sgRNAs could be designed and identied using
bioinformatic tools based on structural, thermodynamic and
functional characteristics. The methods used to improve the
efciency of sgRNAs point to sgRNA-F3 and sgRNA-C3 as the
molecules with the most optimal characteristics for the knockout
of Fus3 and CYP51 in P. jiensis. Likewise, the number of possible
conformations has an important predictive weight to differentiate
between suitable sgRNAs for P. jiensis. These results, although
preliminary and require more studies, are promising because they
show the possibility of using non-toxic alternatives for genetic
improvement, and specic control of plant diseases, as more
research is carried out.
Cited literature
Bartkowski, B., Theesfeld, I., Pirscher, F., & Timaeus, J. (2018). Snipping around
for food: economic, ethical and policy implications of CRISPR/Cas
genome editing. Geoforum, 96(1), 172-180. https://doi.org/10.1016/j.
geoforum.2018.07.017
Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov,
V. (2015). Editing plant genomes with CRISPR/Cas9. Current
opinion in biotechnology, 32(1), 76-84. https://doi.org/10.1016/j.
copbio.2014.11.007
Campenhout, C. V., Cabochette, P., Veillard, A. C., Laczik, M., Zelisko-Schmidt,
A., Sabatel, C., ... & Kruys, V. (2019). Guidelines for optimized gene
knockout using CRISPR/Cas9. BioTechniques, 66(6), 295-302. https://
doi.org/10.2144/btn-2018-0187
Chong, P., Vichou, A. E., Schouten, H. J., Meijer, H. J., Arango Isaza, R. E.,
& Kema, G. H. (2019). Pfcyp51 exclusively determines reduced
sensitivity to 14α-demethylase inhibitor fungicides in the banana black
Sigatoka pathogen Pseudocercospora jiensis. PLOS ONE, 14(10),
Article e0223858. https://doi.org/10.1371/journal.pone.0223858
Díaz-Trujillo, C., Kobayashi, A. K., Souza, M., Chong, P., Meijer, H. J.,
Isaza, R. E. A., & Kema, G. H. (2018). Targeted and random genetic
modication of the black Sigatoka pathogen Pseudocercospora jiensis
by Agrobacterium tumefaciens-mediated transformation. Journal of
microbiological methods, 148(1), 127-137. https://doi.org/10.1016/j.
mimet.2018.03.017
Dupuis, N. F., Holmstrom, E. D., & Nesbitt, D. J. (2014). Molecular-crowding
effects on single-molecule RNA folding/unfolding thermodynamics and
kinetics. Proceedings of the National Academy of Sciences, 111(23),
8464-8469. https://doi.org/10.1073/pnas.1316039111
Escobar-Tovar, L., Magaña-Ortíz, D., Fernández, F., Guzmán-Quesada, M.,
Sandoval-Fernández, J. A., Ortíz-Vázquez, E., ... & Gómez-Lim, M.
A. (2015). Efcient transformation of Mycosphaerella jiensis by
underwater shock waves. Journal of microbiological methods, 119(1),
98-105. https://doi.org/10.1016/j.mimet.2015.10.006
Estrela, R., & Cate, J. H. D. (2016). Energy biotechnology in the CRISPR-
Cas9 era. Current opinion in biotechnology, 38(1), 79-84. https://doi.
org/10.1016/j.copbio.2016.01.005
George, D., & Mallery, P. (2016). An Overview of IBM SPSS Statistics. IBM
SPSS Statistics 23 Step by Step (14 Edition) Routledge.
Jiang, D., Zhu, W., Wang, Y., Sun, C., Zhang, K. Q., & Yang, J. (2013). Molecular
tools for functional genomics in lamentous fungi: recent advances and
new strategies. Biotechnology advances, 31(8), 1562-1574. https://doi.
org/10.1016/j.biotechadv.2013.08.005
Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L.,
... & Tjian, R. (2015). Dynamics of CRISPR-Cas9 genome interrogation
in living cells. Science, 350(6262), 823-826. https://doi.org/10.1126/
science.aac6572
Kocak, D. D., Josephs, E. A., Bhandarkar, V., Adkar, S. S., Kwon, J. B., &
Gersbach, C. A. (2019). Increasing the specicity of CRISPR systems
with engineered RNA secondary structures. Nature biotechnology,
37(6), 657-666. https://doi.org/10.1038/s41587-019-0095-1
Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. H. (2013).
Host-induced gene silencing of cytochrome P450 lanosterol C14α-
demethylase–encoding genes confers strong resistance to Fusarium
species. Proceedings of the National Academy of Sciences, 110(48),
19324-19329. https://doi.org/10.1073/pnas.1306373110
Kuan, P. F., Powers, S., He, S., Li, K., Zhao, X., & Huang, B. (2017). A systematic
evaluation of nucleotide properties for CRISPR sgRNA design. Bmc
Bioinformatics, 18(1), 1-9. https://doi.org/10.1186/s12859-017-1697-6
Li, J., Sun, Y., Du, J., Zhao, Y., & Xia, L. (2017). Generation of targeted point
mutations in rice by a modied CRISPR/Cas9 system. Molecular plant,
10(3), 526-529. http://dx.doi.org/10.1111/pbi.12611
Liang, X., Potter, J., Kumar, S., Ravinder, N., & Chesnut, J. D. (2017). Enhanced
CRISPR/Cas9-mediated precise genome editing by improved
design and delivery of gRNA, Cas9 nuclease, and donor DNA.
Journal of biotechnology, 241(1), 136-146. https://doi.org/10.1016/j.
jbiotec.2016.11.011
Ma, B., & Tredway, L. P. (2013). Induced overexpression of cytochrome P450
sterol 14 α‐demethylase gene (CYP51) correlates with sensitivity to
demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa. Pest
management science, 69(12), 1369-1378. https://doi.org/10.1002/
ps.3513
Mumbanza, F. M., Kiggundu, A., Tusiime, G., Tushemereirwe, W. K., Niblett,
C., & Bailey, A. (2013). In vitro antifungal activity of synthetic dsRNA
molecules against two pathogens of banana, Fusarium oxysporum f.
sp. cubense and Mycosphaerella jiensis. Pest management science,
69(10), 1155-1162. https://doi.org/10.1002/ps.3480
Onyilo, F., Tusiime, G., Tripathi, J. N., Chen, L. H., Falk, B., Stergiopoulos,
I., ... & Tripathi, L. (2018). Silencing of the mitogen-activated protein
kinases (MAPK) Fus3 and Slt2 in Pseudocercospora jiensis reduces
growth and virulence on host plants. Frontiers in plant science, 9(291),
1-12. https://doi.org/10.3389/fpls.2018.00291
Podust, L. M., Poulos, T. L., & Waterman, M. R. (2001). Crystal structure
of cytochrome P450 14α-sterol demethylase (CYP51) from
Mycobacterium tuberculosis in complex with azole inhibitors.
Proceedings of the National Academy of Sciences, 98(6), 3068-3073.
https://doi.org/10.1073/pnas.061562898
Regan, K., Dotterweich, R., Ricketts, S., & Robertson-Anderson, R. M. (2018).
Diffusion and conformational dynamics of single DNA molecules
crowded by cytoskeletal proteins. Journal of Undergraduate Reports
in Physics, 28(1), 100001-100005. https://doi.org/10.1063/1.5109559
Ren, X., Yang, Z., Xu, J., Sun, J., Mao, D., Hu, Y., ... & Ni, J. Q. (2014).
Enhanced specicity and efciency of the CRISPR/Cas9 system with
optimized sgRNA parameters in Drosophila. Cell reports, 9(3), 1151-
1162. https://doi.org/10.1016/j.celrep.2014.09.044
Scott, D. A., & Zhang, F. (2017). Implications of human genetic variation in
CRISPR-based therapeutic genome editing. Nature medicine, 23(9),
1095–1101. https://doi.org/10.1038/nm.4377
Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., & Tripathi, L.
(2019). CRISPR/Cas9 editing of endogenous banana streak virus in
the B genome of Musa spp. overcomes a major challenge in banana
breeding. Communications biology, 2(1), 1-11. https://doi.org/10.1038/
s42003-019-0288-7
Xu, J. R. (2000). MAP kinases in fungal pathogens. Fungal Genetics and
Biology, 31(3), 137-152. https://doi.org/10.1006/fgbi.2000.1237
Zaynab, M., Sharif, Y., Fatima, M., Afzal, M. Z., Aslam, M. M., Raza, M. F.,
... & Li, S. (2020). CRISPR/Cas9 to generate plant immunity against
pathogen. Microbial pathogenesis, 141(1), Article 103996. https://doi.
org/10.1016/j.micpath.2020.103996
Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., & Yang, S. H. (2015).
Off-target effects in CRISPR/Cas9-mediated genome engineering.
Molecular Therapy-Nucleic Acids, 4, Article e264. https://doi.
org/10.1038/mtna.2015.37