This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Mendoza et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223908
5-6 |
The growth results of Trichoderma spp. on
carboxymethylcellulose and birch xylan demonstrate the potential
of these fungal strains for the production of cellulases and
xylanases, this fungal genus has been recognized for its ability to
produce this type of enzymes extracellularly (Rahnama et al., 2013;
Zhang et al., 2018). For this reason, the sugarcane straw and the
fungal strain can be used for the design of a rational process for the
production of hydrolytic enzymes, where the sugarcane straw can
serve as a substrate and the fungal biomass can be the inoculum
for the production of said enzymes (Farinas, 2015; Florencio et
al., 2015), thus developing an integral process for the use of straw
and native strains. It is very important to highlight that Marques
et al. (2018) published that an endophytic strain of Trichoderma
viridae presented an enzymatic activity of cellulase of 64 Ug
-1
and
xylanase of 351 Ug
-1
in solid culture using cane bagasse as support,
reafrming the possibility of designing a process for the production
of hydrolytic enzymes.
Likewise, investigations in corn harvest remains, indicate that
Fusarium oxysporum (Panagiotou et al., 2003), as well as, in forest
waste Aspergillus niger and F. oxysporum (Kaushal et al., 2012),
have the ability to produce enzymes extracellular hydrolytics.
Therefore, the strains of Fusarium spp. isolated in the present
work, as well as sugarcane straw can be explored for the design of
a process for the production of hydrolytic enzymes in solid culture,
since they showed the growth capacity on carboxymethylcellulose
and birch xylan. In addition, there are reports that indicate that
hydrolytic enzymes can be produced efciently using co-cultures
of Fusarium oxysporum with Aspergillus niger, the second was also
present in the sugarcane straw evaluated (Romão-Dumaresq et al.,
2016).
Finally, it is important to mention that the isolated strains with
morphological characteristics corresponding to Penicillum spp.,
Showed growth on carboxymethylcellulose and birch xylan, so
it can also be explored for the production/design of hydrolytic
enzymes, this species has been reported as part of the sugarcane
rhizosphere (Romão-Dumaresq et al., 2016) and also as a producer
of hydrolytic enzymes (Camassola and Dillon, 2010; Gong
et al., 2015). However, for strains with the ability to produce
hydrolysis halo in plates with culture medium supplemented with
carboxymethylcellulose and birch xylan, as the only carbon source,
additional studies are required in solid culture where the enzymatic
activity is quantied and thus, know the real potential of the strains.
Conclusions
The sugar cane straw align favors that the organic matter content
does not have signicant variations in soils where sugar cane is
grown. While the fungal microbiota isolated from the sugarcane
straw was Trichoderma spp., Fusarium spp., Penicillum spp. and
Aspergillus spp. Furthermore, three of the four isolated fungal
strains showed potential to grow using carboxymethylcellulose and
birch xylan as the sole carbon source indicative of their potential to
produce extracellular hydrolytic enzymes.
Acknowledgment
Mendoza-Infante N. Grace appreciates the scholarship granted
by CONACyT for Master’s studies.
Literature cited
Adesina, F. & Onilude, A. (2013). Isolation, identication and screening of
xylanase and glucanase-producing microfungi from degrading wood in
Nigeria. African Journal of Agricultural Research, 8(34), 4414-4421.
https://cutt.ly/Inh57Dh
Agudelo, J, Merchán, Z., Zapata, N., y Muñoz, O. (2013). Evaluación de
las enzimas celulolíticas producidas por hongos nativos mediante
fermentación en estado sólido (SSF) utilizando residuos de cosecha de
caña de azúcar. Revista Colombiana de Biotecnología, 15(1), 108-117.
https://cutt.ly/2nh54yM
Armanhi, J., de Souza, R., Damasceno, N., de Araújo, L., Imperial, J. & Arruda, P.
(2018). A community-based culture collection for targeting novel plant
growth-promoting bacteria from the sugarcane microbiome. Frontiers
in Plant Science, 8, 2191. https://doi.org/10.3389/fpls.2017.02191
Barnett, H. & Hunter, B. (1972). Illustrated genera of imperfect fungi. Illustrated
genera of imperfect fungi (3rd ed). Burges Publishing Company.
Batista-García, R., Balcázar-López, E., Miranda-Miranda, E., Sánchez-
Reyes, A., Cuervo-Soto, L., Aceves-Zamudio, D. & Folch-Mallol,
J. (2014). Characterization of lignocellulolytic activities from a
moderate halophile strain of Aspergillus caesiellus isolated from a
sugarcane bagasse fermentation. PLoS One, 9(8), e105893. https://doi.
org/10.1371/journal.pone.0105893
Bertonha, L., Neto, M., Garcia, J., Vieira, T., Castoldi, R., Bracht, A. & Peralta, R.
(2018). Screening of Fusarium sp. for xylan and cellulose hydrolyzing
enzymes and perspectives for the saccharication of delignied
sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 16,
385-389. https://doi.org/10.1016/j.bcab.2018.09.010
Borges, J., Barrios, M., Sandoval, E., Bastardo, Y. & Márquez, O. (2012).
Características físico-químicas del suelo y su asociación con
macroelementos en áreas destinadas a pastoreo en el estado Yaracuy.
Bioagro, 24(2), 121-126. https://cutt.ly/jnh53mK
Bojórquez-Serrano, J., Castillo Pacheco, L., Hernández Jiménez, A., García
Paredes, J. & Madueño-Molina, A. (2015). Cambios en las reservas
de carbono orgánico del suelo bajo diferentes coberturas. Cultivos
Tropicales, 36(4), 63-69. https://cutt.ly/jnh59Yk
Camassola, M. & Dillon, A. (2010). Cellulases and xylanases production by
Penicillium echinulatum grown on sugar cane bagasse in solid-state
fermentation. Applied Biochemistry and Biotechnology, 162(7), 1889-
1900. https://doi.org/10.1007/s12010-010-8967-3
Cervantes-Preciado, J., Milanés-Ramos, N. & Castillo, M. (2019). Evaluación
de 11 híbridos de caña de azúcar (Saccharum spp.) en la region central
de Veracruz, México. AGROProductividad, 12(3), 69-74. https://doi.
org/10.32854/agrop.v0i0.1085
Comité Nacional para el desarrollo sustentable de la caña de azúcar
(CONADESUCA). 2019. Comparativo de días de zafra respecto al
primer estimado de los ingenios, Ciudad de México: Comité Nacional
para el Desarrollo Sustentable de la Caña de Azúcar. Fecha de consulta:
agosto 2020.
Dela-Cueva, F., De Torres, R., de Castro, A., Mendoza, J. & Balendres, M.
(2019). Susceptibility of sugarcane to red rot caused by two Fusarium
species and its impact on stalk sugar level. Journal of Plant Pathology,
101(3). https://doi.org/10.1007/s42161-019-00253-2
Dhakar, K., Sharma, A. & Pandey, A. (2014). Cold, pH and salt tolerant
Penicillium spp. inhabit the high altitude soils in Himalaya, India.
World Journal of Microbiology and Biotechnology, 30(4), 1315-1324.
https://doi.org/10.1007/s11274-013-1545-4
De Souza, R., Okura, V., Armanhi, J., Jorrín, B., Lozano, N., Da Silva, M. &
Arruda, P. (2016). Unlocking the bacterial and fungal communities
assemblages of sugarcane microbiome. Scientic Reports, 6(1), 1-15.
https://doi.org/10.1038/srep28774
Deshmukh, R., Dange, S., Jadhav, P., Deokule, S. & Patil, N. (2013). Studies on
the mycoora in the rhizosphere of sugarcane (Saccharum ofcinarum
L.). International Journal of Bioassays, 2(4), 674-676. https://cutt.ly/
enh50ew
Elias, F., Woyessa, D. & Muleta, D. (2016). Phosphate solubilization potential
of rhizosphere fungi isolated from plants in Jimma Zone, Southwest
Ethiopia. International Journal of Microbiology, 2016, 1-11. https://
doi.org/10.1155/2016/5472601
Farinas, C. (2015). Developments in solid-state fermentation for the production
of biomass-degrading enzymes for the bioenergy sector. Renewable and
Sustainable Energy Reviews, 52, 179-188. https://doi.org/10.1016/j.
rser.2015.07.092
Florencio, C., Couri, S. & Farinas, C. (2012). Correlation between agar plate
screening and solid-state fermentation for the prediction of cellulase
production by Trichoderma strains. Enzyme research, 2012. https://doi.
org/10.1155/2012/793708
Florencio, C., Cunha, F., Badino, A. & Farinas, C. (2015). Validation of a novel
sequential cultivation method for the production of enzymatic cocktails
from
Trichoderma strains. Applied Biochemistry and Biotechnology,
175(3), 1389-1402. https://doi.org/10.1007/s12010-014-1357-5
Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G. & Wang, L. (2015).
Comparative secretome analysis of Aspergillus niger, Trichoderma
reesei, and Penicillium oxalicum during solid-state fermentation.