This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223904. January - March. ISSN 2477-9407.
4-5 |
and Zapata et al. (2019). In addition, it can be observed that the
hydrolyzate prepared with a pH of 6.33 had a higher hydrolysis
approach, generating a reduction in concentration, which indicates
that the hydrolysis with this treatment was more effective.
Table 4. Protein concentration and hydrolysis approximation.
pH Protein concentration
mg.mL
-1
Hydrolysis approximation
(%)
5.32 2.38 ± 0.12
a
46 ± 2.50
a
5.94 2.64 ± 0.20
a
40 ± 4.40
a
6.33 1.22 ± 0.14
b
72 ± 3.10
b
a, b
Different letters symbolize statistically signicant differences (p <0.05).
The data represent the mean ± SD
Amino acid composition
The results of the composition of essential amino acids (EAA)
of the enzymatic hydrolyzate using the soluble sh as raw material
for its elaboration are shown in table 5. It can be seen that the
hydrolyzate using the Granozyme ACC® enzyme had a lower
EAA composition than that obtained by Bhaskar et al. (2008) and
Ovissipour et al. (2012). These results are as expected, because these
studies have used viscera or blood that contain a higher percentage
of protein to obtain the hydrolyzate. However, the composition of
amino acids obtained meets all the nutritional requirements of EAA
of the marine species Marsupenaeus japonicus (Teshima et al.,
2002), which is a promising result for the use of this type of by-
products in the supplement industry. nutritional.
Table 5. Essential amino acid composition of the hydrolyzate.
EAA
Hidrolizated
g.100g
-1
Bhaskar
et al.
(2008)
g.100g
-1
Ovissipour et
al. (2012)
g.100g
-1
EAA request
(Marsupenaeus
japonicus)
g.100g
-1
Arginine 1.80 10.82 8.81 1.40-1.80
Histidine 2.32 2.06 8.45 0.50-0.70
Isoleucine 1.40 3.6 6.93 1.10-1.40
Lisine 1.92 7.07 1.87 1.70-2.00
Methionine
Phenylalanine
Threonine
Valine
1.36
1.36
1.52
1.53
2.02
3.53
4.02
4.79
1.48
3.85
5.9
8.93
0.60-0.80
1.30-1.60
1.10-1.40
1.20-1.50
EAA: essential amino acids; sample number: 25
Conclusions
The enzymatic hydrolysis of the soluble sh had a better
performance at a pH of 6.33; With the implementation of this value,
the performance in obtaining large amounts of protein with this by-
product as raw material could be improved, generating added value
to it.
Soluble sh has proven to be a promising source of nutritional
supplements for marine species to take advantage of a by-product
that would otherwise be discarded causing environmental pollution.
However, future studies in various marine species are necessary to
determine its efcacy as a food additive or animal nutrition.
Cited literature
Association of ofcial analytical chemists - AOAC. 2005. Determination of
Moisture, Ash, Protein and Fat. Ofcial Method of Analysis of the
Association of Analytical Chemists. 18th Ed, Washington DC.
Babazadeh, M., Soltani, M., Soltani, A. & Asl, M.S. (2014). Production of
single cell protein from Stickwater of kilka sh meal factory using
Lactobacillus plantarum and Bacillus licheniformis. WALIA Journal,
30(S3), 96–101. https://cutt.ly/jQOKIk8
Baez-Suarez, A.J., Ospina-de-Barreneche, N. y Zapata-Montoya, J.E. (2016).
Efecto de temperatura, pH, concentración de sustrato y tipo de enzima en
la hidrólisis enzimática de vísceras de Tilapia Roja (Oreochromis spp.).
Información Tecnológica, 27(6), 63–76. http://dx.doi.org/10.4067/
S0718-07642016000600007
Bhaskar, N., Benila, T., Radha, C. & Lalitha, R.G. (2008). Optimization
of enzymatic hydrolysis of visceral waste proteins of Catla (Catla
catla) for preparing protein hydrolysate using a commercial protease.
Bioresource Technology, 99(2), 335–343. https://doi.org/10.1016/j.
biortech.2006.12.015
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-
dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.
org/10.1016/0003-2697(76)90527-3
Granotec. (2017). Granozyme ACC®. Nutrición y Biotecnología para la salud.
Guayaquil. Ecuador. https://www.granotec.com.ec/
Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z. & Mai, K. (2018).
A revisit to shmeal usage and associated consequences in Chinese
aquaculture. Reviews in Aquaculture, 10(2), 493-507. https://doi.
org/10.1111/raq.12183
IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0.
Armonk, NY: IBM Corp.
Instituto ecuatoriano de normalización – INEN. 1980a. Norma técnica
ecuatoriana NTE INEN 0466: Harina de pescado. Determinación de la
materia grasa. https://cutt.ly/bQOK0Xe
Instituto ecuatoriano de normalización – INEN. 1980b. Norma técnica
ecuatoriana NTE INEN 0467: Harina de pescado. Determinación de las
cenizas. https://cutt.ly/SQOK3GZ
Jannathulla, R., Rajaram, V., Kalanjiam, R., Ambasankar, K., Muralidhar,
M. & Dayal, J.S. (2019). Fishmeal availability in the scenarios of
climate change: Inevitability of shmeal replacement in aquafeeds and
approaches for the utilization of plant protein sources. Aquaculture
Research, 50(12), 3493-3506. https://doi.org/10.1111/are.14324
Li, X., Dong, S., Zhang, W., Fan, X., Wang, R., Wang, P. & Su, X. (2019).
The occurrence of peruoroalkyl acids in an important feed material
(shmeal) and its potential risk through the farm-to-fork pathway to
humans. Journal of Hazardous Materials, 367, 559-567. https://doi.
org/10.1016/j.jhazmat.2018.12.103
Mahdabi, M. & Hosseini-Shekarabi, S.P. (2018). A Comparative Study on Some
Functional and Antioxidant Properties of Kilka Meat, Fishmeal, and
Stickwater Protein Hydrolysates. Journal of Aquatic Food Product
Technology, 27(7), 844–858. https://doi.org/10.1080/10498850.2018.
1500503
Nilsang, S., Lertsiri, S., Suphantharika, M. & Assavanig, A. (2005). Optimization
of enzymatic hydrolysis of sh soluble concentrate by commercial
proteases. Journal of Food Engineering, 70(4), 571–578. https://doi.
org/10.1016/j.jfoodeng.2004.10.011
Norma ocial mexicana. NMX-F-428.1982. Normas Ocial Mexicanas para la
determinación de humedad en alimentos.
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R.
& Shahiri, H. (2009). The effect of enzymatic hydrolysis time and
temperature on the properties of protein hydrolysates from Persian
sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238–
242. https://doi.org/10.1016/j.foodchem.2008.12.013
Ovissipour, M., Abedian-Kenari, A., Motamedzadegan, A. & Nazari, R.M.
(2012). Optimization of Enzymatic Hydrolysis of Visceral Waste
Proteins of Yellown Tuna (Thunnus albacares). Food and Bioprocess
Technology, 5(2), 696–705. https://doi.org/10.1007/s11947-010-0357-x
See, S.F., Hoo, L.L. & Babji, A.S. (2011). Optimization of enzymatic hydrolysis
of salmon (Salmo salar) skin by Alcalase. International Food Research
Journal, 18(4), 1359–1365. https://cutt.ly/GQOLHOd
Šližyte, R., Carvajal, A.K., Mozuraityte, R., Aursand, M. & Storrø, I. (2014).
Nutritionally rich marine proteins from fresh herring by-products for
human consumption. Process Biochemistry, 49(7), 1205–1215. https://
doi.org/10.1016/j.procbio.2014.03.012
Souissi, N., Bougatef, A., Triki-Ellouz, Y. & Nasri, M. (2007). Biochemical
and functional properties of sardinella (Sardinetta aurita) by-product
hydrolysates. Food Technology and Biotechnology, 45(2), 187–194.
https://hrcak.srce.hr/27772
Taheri, A., Anvar, S.A.A., Ahari, H. & Fogliano, V. (2013). Comparison the
functional properties of protein Hydrolysates from poultry byproducts