© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: alboresores@gmail.com
Inclusion of Anastrepha ludens fruit y pupae in poultry rations added with digestive enzymes
and yeast
Inclusión de pupas de mosca de la fruta Anastrepha ludens en raciones para aves adicionadas con
enzimas digestivas y levadura
Inclusão de pupas de mosca-das-frutas Anastrepha ludens em rações avícolas com adição de enzimas
digestivas e levedura
José Alfonso López-García
1
Julieta Grajales-Conesa
1
Víctor Jesús Albores-Flores
1*
Rodolfo Torres de los Santos
2
Luis Alejandro Ramón-Javier
1
Liliana Carolina Cordova-Albores
3
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.03
Animal Production
Associate editor: Ing. Agr. MSc. Juan Vergara
1
Instituto de Biociencias. Universidad Autónoma de Chiapas.
Boulevard Príncipe Akishino s/n. Col. Solidaridad 2000.
Tapachula, 30798, Chiapas, México. Tel. y fax. 52 962 622 5723
2
Universidad Autónoma De Tamaulipas. Unidad Académica
Multidisciplinaria Mante. Blvd Enrique Cárdenas González
# 1201 PTE. Col.. Jardín CP 89840 Ciudad Mante, Tamps.
3
Escuela de Agronomía. Universidad de La Salle Bajío. Av.
Universidad 602, Col. Lomas del Campestre. C. P. 37150.
León Guanajuato, México.
Received: 20-10-2020
Accepted: 20-09-2021
Published: 16-12-2021
Abstract
In Mexico, poultry meat represents 24,8 % of the protein consumed. In
the search for protein sources that meet this demand, the use of insects has
been found to be of potential interest. In order to reduce the effect of the
components that affect the absorption of nutrients, additives such as digestive
enzymes and microorganisms have been used. The objective of this study
was to determine the weight gain of birds (Gallus gallus domesticus) fed with
diets formulated with fruit y pupa (Anastrepha ludens), digestive enzymes
and yeast (Saccharomyces cerevisiae). Groups were established completely
at random with different inclusions of y pupae 0 %, 12 %, 14 % and 16 %
respectively and signicant differences were found (p<0.05). The group with
14 % protein was the one with the greatest weight gain during the experiment
and the second phase used digestive enzymes and Saccharomyces cerevisiae
and it was found that treatment 3: 14 % of Anastrepha ludens pupa + 200 IU
of Protease + 1502 IU of Amylase + 80 IU of Cellulase + 62 IU of Lipase
+ 40 IU of Pectinase + 8.88x109 CFU S. cerevisiae / 100 g of feed showed
differences (p<0.05) and the best results in the weight gain of the birds. It is
concluded that inclusion of 14 % of y pupa in rations promotes the weight
gain of Gallus gallus domesticus with the addition of digestive enzymes and
S. cerevisiae.
Keywords:
Food
Probiotics
Proteases
Protein by-products
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903. January - March. ISSN 2477-9407.
Resumen
En México la carne de aves representa el 24,8 % de la proteina
consumida. En la búsqueda de fuentes proteicas que cubran esa
demanda se han encontrado con interés potencial la utilización de
insectos. Con la nalidad de reducir el efecto de los componentes
que afectan la absorción de nutrientes se han utilizado aditivos como
enzimas digestivas y microorganismos. El objetivo del presente
estudio fue determinar la ganancia de peso de aves (Gallus gallus
domesticus) alimentadas con dietas formuladas con pupa de mosca
de la fruta (Anastrepha ludens), enzimas digestivas y levadura
(Saccharomyces cerevisiae). Se establecieron grupos completamente
al azar con diferentes inclusiones de pupa de mosca 0 %, 12 %, 14
% y 16 % respectivamente y se encontraron diferencias signicativas
(p<0,05). El grupo con 14 % de proteína fue el que mayor ganancia
de peso tuvo durante el experimento y la segunda fase se utilizaron
enzimas digestivas y S. cerevisiae y se encontró que el tratamiento 3:
14 % de pupa de Anastrepha ludens+ 200 UI de Proteasa+1502 UI de
Amilasa+ 80 UI de Celulasa+ 62 UI de Lipasa+ 40 UI de Pectinasa+
8,88x10
9
UFC S. cerevisiae / 100 g de alimento mostró diferencias
(p<0,05) y los mejores resultados en la ganancia de peso de las aves.
Se concluye que la inclusión de 14 % de pupa de mosca en raciones
promueve para ganancia de peso de Gallus gallus domesticus con la
adición de enzimas digestivas y S. cerevisiae.
Palabras clave: Alimentación, probióticos, proteasas, subproductos
proteicos.
Resumo
No México, a carne de frango representa 24,8 % da proteína
consumida. Na busca por fontes proteicas que atendam a essa demanda,
o uso de insetos tem se mostrado de potencial interesse. Para reduzir o
efeito dos componentes que afetam a absorção de nutrientes, aditivos
como enzimas digestivas e microrganismos têm sido utilizados. O
objetivo deste trabalho foi determinar o ganho de peso de aves (Gallus
gallus domesticus) alimentadas com dietas formuladas com pupa de
mosca-das-frutas (Anastrepha ludens), enzimas digestivas e levedura
(Saccharomyces cerevisiae). Os grupos foram estabelecidos de forma
completamente aleatória com diferentes inclusões de pupas de mosca
0 %, 12 %, 14 % e 16 %, respetivamente, e diferenças signicativas
foram encontradas (p<0,05). O grupo com 14 % de proteína foi
o que apresentou maior ganho de peso durante o experimento e a
segunda fase utilizou enzimas digestivas e Saccharomyces cerevisiae
e vericou-se que o tratamento 3: 14 % de Anastrepha ludens pupa +
200 UI de Protease + 1502 UI de Amilase + 80 UI de Celulase + 62 UI
de Lipase + 40 UI de Pectinase + 8,88x109 UFC de S. cerevisiae / 100
g de ração apresentaram diferenças (p<0,05) e os melhores resultados
no ganho de peso das aves. Conclui-se que a inclusão de 14 % de
pupa de mosca nas rações promove o ganho de peso de Gallus gallus
domesticus com a adição de enzimas digestivas e S. cerevisiae.
Palavras-chave: Alimentos, probáticos, protéases, subprodutos de
proteínas.
Introduction
The poultry industry is one of the most important livestock
activities in Latin American countries (FAO, 2015). In Mexico, it
participates with 24.8 % of animal protein consumed (UNA, 2015;
SAGARPA, 2015); particularly in rural areas, backyard poultry
farming is the main source of animal protein (egg and meat) for
human consumption (SAGARPA, 2007; SEDESOL, 2010).
In commercial poultry farming, soybean meal, meat and sh are
the primary sources of protein (FAO, 2013), however, in backyard
conditions, the feeding is made, primarily, based on grains (corn,
sorghum) which on many occasions, do not cover the protein needs of
the birds (Medina, 2012). Such deciency limits the productive and
reproductive levels (Sánchez, 2013). In addition, since corn is the base
of the Mexican diet, a food competition is established for the same
input (SAGARPA, 2015; USDA, 2015). On the other hand, cereal-
based poultry rations contain non-starch polysaccharides (NAP)
such as cellulose and hemicellulose, which affect the absorption of
nutrients, causing deciencies in animal nutrition and development
(Choct et al., 2010).
In the search for alternative sources of protein useful for animal
feed and available in the environment, a large number of research
works have been carried out (SEDESOL, 2010; FAO, 2015). In this
sense, due to the quantity and quality of protein that insects have
(Veldkamp et al., 2012; Sancho et al., 2015), they can be an alternative
for feeding birds, with the advantage that birds naturally ingest adult
insects, larvae, and pupae (Hwangbo et al., 2009). These contain
amounts of protein and fat comparable with commercial protein meal
(Barroso et al., 2014; Józeak and Engberg, 2015), in addition, that
the composition of chitin (exoskeleton) has been found to favor the
immune response, the growth of benecial bacteria and inhibits the
growth of pathogenic microorganisms (Van Huis et al., 2013).
Likewise, the use of biological additives (microorganisms and
enzymes) in the animal diet improves the availability of nutrients
(Kiarie, 2013), within these there are yeasts, mainly Saccharomyces
cerevisiae that has been used in different species such as bovines,
pigs and poultry as an inhibitor of pathogens such as Salmonella sp.,
digestion enhancers, promoting the action of digestive enzymes and
stimulating immunity (Ogbuewu et al., 2018). Likewise, they favor
an increase in the size and number of intestinal villi, and maintain a
better state of immunocompentence and prevent colonization of the
intestine by Salmonella sp. (Hassanein and Soliman, 2010; Adebiyi et
al., 2012, Kiros, et al., 2019).
For their part, exogenous enzymes help to hydrolyze molecules
facilitating the digestion of food and producing a better development
by birds (Bedford and Patridge, 2001; Méndez et al., 2009). Enzymes
can be classied according to polygastric or monogastric species and
in the latter case it is where the catalytic biomolecules that normally
cannot be metabolized by birds, although due to their microbiota,
have been used recently. They promote better digestion, improve
intestinal transit and modify the consistency of the stool allowing
greater digestibility of the nutrients. It has also been found that in
young birds these enzymes promote a better productive performance
of the same (Mulisa, 2017). Therefore, the objective of this work
was to determine the weight gain of birds (Gallus gallus domesticus)
fed with diets formulated with fruit y pupa (Anastrepha ludens),
digestive enzymes and yeast (S. cerevisiae).
Materials and methods
The work was carried out at the “Ayol” agroecological farm
(14º49’45 ”N, 92º17’47” W) located in Tapachula, Chiapas and in the
researchLlaboratorio de Investigación del Instituto de Biociencias de
la Universidad Autónoma de Chiapas (UNACH).
2-6
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
López-García et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903
The experiment was carried out in two phases. Phase 1: To
determine the effect of the y pupa (A. ludens) and biological
additives (digestive enzymes and S. cerevisiae) on the development
of Gallus gallus domesticus fed with isoprotein rations designed for
this purpose, the following experiment was established: Isoprotein
rations were designed according to the nutritional requirements of the
birds (NRC, 1994) with A. ludens pupa as a non-conventional protein
source. The rations were made with corn, commercial kernel and y
pupa, whose proximal chemical content was analyzed by quantifying
crude protein, crude fat, acid detergent ber, moisture, ash and
nitrogen-free extract (NMX-f-083- 1986, NMX-f-066-s-1978, NMX-
f-089-s-1978, NOM-F-68-S-1980, NOM-F-90-S-1978.) (table 1).
Table 1. Proximal chemical analysis of ingredients (g.100g
-1
).
Determination Maice Fly pupa Core
Crude protein 8.9 ± 0.1 49.21 ± 0.3 19.78 ± 0.17
Crude fat 2.40 ± 0.21 1.48 ± 0.38 2.74 ± 0.1
Fiber 4.49 ± 0.37 0.0025 ± 0.005 4.94 ± 0.12
Ash 0.87 ± 0.14 8.53 ± 0.27 5.6 ± 0.16
NFE
1
83.27 ± 0.2 40.85 ± 0.24 66.92 ± 0.13
Values on a dry basis. 1Nitrogen-free extract
To evaluate the weight gain of the birds fed these rations, 100
male individuals were assigned to treatments in 4 groups of birds of
the Sussex line of one month of age and an average weight of 415 ±
0.1 g with 25 individuals each. In a group in a completely randomized
design with 4 repetitions (one bird as an experimental unit and 24
more birds as a repetition), the weight gain and mortality rate were
measured for a period of 30 days.
Table 2. Ingredients and nutritional composition in the nal stage
rations.
Ingredients % Control
treatment
Treatment
1
Treatment
2
Treatment
3
Fly pupa 0 12 14 16
Maice 64 68 74 79
Core 36 20 12 7
Valor nutricional calculado
Protein 14.43 14.43 14.36 14.30
Fat 2.38 2.14 2.09 2.06
Fiber 4.34 3.67 3.55 3.44
Humedity 9.18 9.44 9.48 9.53
Ash 3.55 2.48 2.27 2.07
Energy
1
(J) 1,106.58 1,135.37 1,141.89 1,148.09
1
Energy in joules.100 g
-1
of feed
Management: The birds were previously adapted to the rations
with the gradual inclusion of the diet and immunized against enzootic
diseases of the region (Pasteurellosis and Newcastle).
The rst phase of the experiment concluded with the identication
of the ration that promoted the greatest weight gain in the birds
(p<0.05) (table 3). This made it possible to know the degree of
inclusion of the alternative protein source in isoprotein rations in
order to design in a second phase rations with pupae of A. ludens
added with different proportions of a biological additive: Protease
225 IU, Amylase 1690 IU, Cellulase 90 IU, Lipase 70 IU, Pectinase
45 IU; S. cerevisiae 1.0x1010 CFU per g of additive, and the weight
gain and mortality rate were evaluated with a completely randomized
design and 4x2 factorial arrangement (treatment and sex): T0: ration
without biological additive, T1: 0.044 %; T2: 0.066 %; T3: 0.088
%, according to the nutritional requirements (table 4) of the birds
during 69 days. For this, 80 female and male birds (Gallus gallus
domesticus) one week old and an average weight of 94 ± 0.7 g were
used, randomly distributed and included in each treatment (1 bird as
an experimental unit and 19 birds as a repetition).
The statistical analysis consisted for the rst and second phases of
the experiment in an analysis of variance to determine the differences
between the means of the treatments and a contrast of means by
Tukey to identify the different treatment (s) with a condence of 95
% (p<0.05) with the statistical software Statgraphics Centurion XVI
MR.
Results and discussion
The proximal chemical composition of the unconventional
protein source (A. ludens) used for the preparation of isoprotein
rations is shown in table 3. The proximal chemical composition of
a wide variety of insects has been described in advance (Kouřimská
and Adámková , 2016; Oonincx and Finke, 2020), but not the pupa
of A. ludens, which so far lacks studies that describe its nutritional
content. Pretorius (2011) found that the nutritional content of Musca
domestica pupa is close to 60 % protein, which is higher than that
found in the present work. On the other hand, Rumpold and Schlüter
(2013), determined the nutritional composition of more than 200
insects and found that those of the order Diptera have a percentage
range of 49.48 ± 13.61 of protein, lower in the reported ber content
13.56 ± 3.81 and fat 22.75 ± 10.86; noting that A. ludens is a potential
protein source to be used in domestic animal feed.
3-6|
The weight gain of the birds between the treatments was different
(P≤0.05) with the inclusion of 12 %, 14 % and 16 % of pupa in the
diet and the control group (table 4).
The highest weight gain of the birds was obtained by including 14
% of A. ludens pupae in the diet with a mean gain of 857.30 ± 112.54
g during the evaluation period and a zero mortality rate.
Pretorius (2011) determined that with an inclusion of 10 % of
Musca domestica in a conventional diet for birds, the best results are
obtained in weight gain and efciency in feed conversion, although
the range extends to 25 % with favorable results. The inclusion of
insects in the diet improved weight gain since according to Hwangbo
et al. (2009) provides a positive effect due to their digestibility and
nutritional value. According to De Marco et al. (2015) and Schiavone
et al
. (2017) the our of Tenebrio molitor and Hemetia illucens
respectively, are valuable sources of metabolizable energy and
digestible amino acids that birds can take advantage of together with
their rapid digestive process. Bovera et al. (2016) used our from
Tenebrio molitor in the larval stage and found that chickens develop
better when insects are included as a source of protein, similar to this
study. The source of ber, the type and age of the birds inuence the
response of the birds to their diet (González et al. 2010; Oonincx and
Finke, 2020).
The treatments evaluated with the inclusion of biological
additives such as enzymes and yeasts in the diet prepared with 14 %
of A. ludens (table 3) were different (P≤0.05). The treatment 3 with
biological additive (200 IU of Proteases, 1502 IU of Amylases, 80
IU of Cellulase, 62 IU of Lipase, 40 IU of Pectinase, 8.88x109 CFU
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903. January - March. ISSN 2477-9407.
4-6|
Table 3. Nutritional composition of the rations (g100g

) with the biological additive
Nutrient Star Development End T1 T2 T3
Protein 20.1 17 14.36
Fat 2.27 2.19 2.09
Fiber 3.80 3.67 3.55
Moisture 9.19 9.35 9.48
Ash 4.77 3.44 2.27
AME
1
(J) 1,001.98 1,076.96 1,141.89
Enzymes
2
Protease
Amylase
Cellulase
Lipase
Pectinase
100
751
40
31
20
150
1,127
60
47
30
200
1,502
80
62
40
S. cerevisiae (CFU)
3
4,44x10
9
6,66x10
9
8,88x10
9
1
AME. apparent metabolizable energy (Joules).
2
Units of digestive enzymes.
3
Colony-forming unit according to the Alka Rumen NRV commercial product information,
NORVET
MR
laboratories.
of S. cerevisiae) had the greatest positive effect on the weight gain
of birds, with an average of 1,902.09 g with respect to the control
group that had 1,699.99 g of gain and the males had a signicantly
greater gain than that of the females (P≤0.05) (table 5). However,
the interaction between the additive and sex did not show differences
(table 6 and 7), although Hristakieva et al. (2014) mention
that the
sex of the birds is decisive in their development as the males have a
higher metabolic rate. For their part, enzymes and yeasts improved
the digestibility of nutrients through hydrolytic processes, which
birds are
not capable of digesting (Carvajal and Oviedo, 2014),
for example: non-starch polysaccharides (PNA) contained in corn.
According to Choct et al. (2010), the use of enzymes for poultry
neutralizes its effects in cereals, which are not desirable since they
increase viscosity, reduce the digestion and absorption of all the
nutrients in the diet, especially fat and protein.
On the other hand, Hajati (2010); Khan (2011); Kiarie et al.
(2013), found that enzyme complexes promote weight gain and
carcass performance, by improving the nutritional value and
digestibility of poultry rations, that transform them into low
molecular weight products that can pass directly through the
intestinal mucosa or are absorbed; furthermore, Cho et al. (2012)
observed that enzymes counteract the negative effects caused by the
decrease in the concentration of nutrients.
Table 4. ANOVA Weight gain of birds with isoprotein rations.
Groups Weight gain (g)
Witness 757.67 ± 125.93
bc
T1 524.00 ± 71.06
c
T2 857.33 ± 112.54
a
T3 653.33 ± 140.79
ab
a, b, c
Different literals mean signicant differences (p <0.05).
Table 5. Phase two Experiment Weight gain of birds with
biological additive (Saccharomyces serevisae +
digestive enzymes) in the diet.
Source P-Value Tukey Mean value
A: Treatment
0.0471 T3 1,902.09
a
T2 1,777.12
ab
T1 1,731.61
ab
Witness 1,699.99
b
B: Sex
0.0000 Male 1,932.92
a
Female 1,622.48
b
AB
0.6078
No mortality was recorded during the biological additive
inclusion phase (Saccharomyces serevisae + digestive enzymes),
according to Guida et al. (2015) S. serevisae has a probiotic function
in birds, since they observed that it can agglutinate pathogenic
bacterial strains in vitro. This, attributed to the fact that naturally its
wall formed by important natural growth promoters (β 1-3 glucan
and mannan-proteins) are capable of inhibiting the colonization
by pathogens of the digestive tract and adsorb mycotoxins
(Zhang and Wang, 2008, Ogbuewu et al. ., 2018). Shareef and Al-
Dabbagh (2009) found that including up to 2 % of Saccharomyces
in the diet was enough to achieve a competitive response in the
production and mortality parameters, which coincides with that
reported by Elghandour et al. (2019) who reported the use of yeast
as a probiotic. The use of this yeast in the diet is directly related
to the weight gain of the birds, it improves the intestinal mucosa,
increases the intestinal villi, thereby increasing the activity of the
enzymes secreted by the villi and absorption of nutrients (Arce et
al., 2008); however, the development of birds will be affected if the
availability of nutrients is correct, Adebiyi et al. (2012) found no
differences in the weight of broilers using 1 %, 1.25 % and 1.5 %
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
López-García et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903
5-6|
review. Journal of Applied Microbiology, 128, 658-674. https://doi.
org/10.1111/jam.14416
FAO. (2015). Food and agricultural organization. Panorama de la inseguridad
alimentaria en América latina y el Caribe. https://cutt.ly/gns0l1M
FAO. (2013). Food and agricultural organization. Disponibilidad de piensos
para aves en países en desarrollo. https://cutt.ly/pns0mx5
Hajati, H. (2010). Effects of Enzyme Supplementation on Performance, Carcass
characteristics, Carcass Composition and Some Blood Parameters of
Broiler Chicken. American Journal of Animal and Veterinary Sciences,
5, 221-227. https://doi.org/10.3844/ajavsp.2010.221.227
Hassanein, S.M., y Soliman, N.K. (2010). Effect of probiotic (Saccharomyces
cerevisiae) adding to diets on intestinal microora and performance of
Hy-line layers hens. Journal of American Science, 6, 159-169. https://
doi.org/10.7537/marsjas061110.21
Hristakieva, P., Mincheva, N., Oblakova, M., Lalev, M., e Ivanova, I. (2014).
Effect of genotype on production traits in broiler chickens. Journal of
Animal Science, 47, 19-24. https://cutt.ly/Vns0TPk
Hwangbo, J., Hong, E.C.,Jang, A., Kang, H.K., Oh, J.S., Kim, B.W., Park, B.S.
(2009). Utilization of house y-maggots, a feed supplement in the
production of broiler chickens. Journal of Environmental Biology, 30,
609-614. PMID: 20120505.
Hwangbo, J., Hong, E. C., Jang, A., Kang, H. K., Oh, J. S., Kim B. W., y Park,
B. S. (2009). Utilization of house y-maggots, a feed supplement in the
production of broiler chickens. Journal of environmental biology, 30,
609–614. PMID: 20120505 https://cutt.ly/Tns9AHc
Józeak, D. y Engberg, R.M. (2015). Insects as poultry feed. In: Svtová
drbeářská vdecká spolenost., & Svtová drbeářská vdecká
spolenost. (Eds.). Proceedings: 20th European Symposium on Poultry
Nutrition : 24-27 August 2015, Prague, Czech Republic. https://cutt.
ly/Zns9FOu
Kouřimská, L., y Adámková, A. (2016). Nutritional and sensory quality of
edible insects. Nutrition and Food Science Journal, 4, 22-26: https://
doi.org/10.1016/j.nfs.2016.07.001
Khan, S. H., Atif, M., Mukhtar, N., Rehman, A., y Fareed, G. (2011). Effects
of supplementation of multi-enzyme and multi-species probiotic on
production performance, egg quality, cholesterol level and immune
system in laying hens. Journal of Applied Animal Research, 39, 386-
398. https://doi.org/10.1080/09712119.2011.621538
Kiarie, E., Romero, L.F., y Nyachoti, C.M. (2013). The role of added feed
enzymes in promoting gut health in swine and poultry. Nutrition
Research Review, 26, 71-88. PMID: 23639548 https://doi.org/10.1017/
S0954422413000048
Kiros, T.G, Gaydos, J., Corley, R., Berghaus, R., y Hofacre, C. (2019).
Effect of Saccharomyces cerevisiae yeast products in reducing direct
colonization and horizontal transmission of Salmonella Heidelberg in
broilers. Journal of Applied Poultry Research, 28, 23–30. https://doi.
org/doi.org/10.3382/japr/pfy012
González, A. J. M., Jiménez, M. E., González, S. D., Lázaro, R., Mateos, G. G.
(2010). Effect of inclusion of oat hulls and sugar beet pulp in the diet
on productive performance and digestive traits of broilers from 1 to 42
days of age. Animal Feed Science Technology, 162, 37-46. https://doi.
org/10.1016/j.anifeedsci.2010.08.010
Guida, N., Mesplet, M., Kotsias, F., González, S., Bustos, C., Laiño, M.,
Franco, P., Picos, J., y Mascolo, M. (2015). Evaluación del efecto de
Saccharomyces cerevisiae sobre E. coli en la cría de pollos. Revista
Electrónica de Veterinaria, 16, 1-8. https://cutt.ly/Tns3aDx
Medina, L. S. 2012. El huerto familiar del sureste de México. In perl productivo
y problemática sanitaria en la cría de animales domésticos en hogares
campesinos e indígenas de Chiapas. 1ra ed. Mariaca, R. M. p.245-267.
Méndez D., A. D., Cortes C., A. C., Fuente M., B., López C., C. y Ávila C.,
E. (2009). Efecto de un complejo enzimático en dietas sorgo+soya
sobre la digestibilidad ileal de aminoácidos, energía metabolizable y
productividad en pollos. Técnica Pecuaria en México, 47(1), 15-25.
https://cutt.ly/6ns3jEJ
Mulisa Faji Dida. (2016). Review Paper on Enzyme Supplementation in Poultry
Ration. International Journal of Bioorganic Chemistry, 1, 1-7. https://
cutt.ly/GnRzvPr
National Research Council. 1984. Nutrient Requirements of Poultry: Eighth
Revised Edition. Washington, DC: The National Academies Press.
https://doi.org/10.17226/19397
Nmx-f-083-1986. Alimentos. Determinación de humedad en productos
alimenticios. Norma Mexicana. https://cutt.ly/Ans31UE
Nmx-f-066-s-1978. Determinación de cenizas en alimentos. Norma Mexicana.
https://cutt.ly/9ns34k9
Nmx-f-089-s-1978. Determinación de extracto etéreo (método soxhlet) en
alimentos. Norma mexicana. https://cutt.ly/Xns3783
NOM-F-68-S-1980. Alimentos Determinación de Proteínas. Norma Ocial
Mexicana. https://cutt.ly/gns36l5
NOM-F-90-S-1978. Determinación de Fibra Cruda en Alimentos. Norma ocial
mexicana. https://cutt.ly/qns8wlh
Ogbuewu I. P,
Okoro, V. M, Mbajiorgu, E. F, y Mbajiorgu, C. A (2018). Yeast
(Saccharomyces cerevisiae) and its effect on production indices of
livestock and poultry—a review. Comparative Clinical pathology. PP
1-9: https://doi.org/10.1007/s00580-018-2862-7
yeast, although they presented morphological differences such as
villus elongation, crypt depth and crypt gland area. in accordance
with that described by Reyes et al. (2014) who observed that lower
cell wall concentrations than 0.1 %, allows better development of
organs in birds, increasing the absorption response.
Mortality of up to 6 % (Elghandour et al., In 2019) has been
reported in poultry fattening, although the parameters indicate
that it should be less than 3 %. In the present work, the mortality
rate was 0 % with the use of a biological additive that contained
Saccharomyces serevisae + digestive enzymes in agreement with
the previous author who mentions said yeast as a probiotic and
improves the results.
Conclusion
The use of y pupae (Anastrepha ludens) and biological
additives (Proteases, Lipases, Cellulases, Pectinases, Amylases and
Saccharomyces cerevisiae) in rations for poultry (Gallus gallus
domesticus), promotes greater weight gain.
Mortality is not inuenced by the use of the biological additives
used in the experiment.
Literature cited
Adebiyi, O. A., Makanjuola, B. A., Bankole, T. O., y Adeyori, A. S. (2012).
Yeast Culture (Saccharomyces cerevisiae) Supplementation: Effect on
the Performance and Gut Morphology of Broiler Birds. Global Journal
of Science Frontier Research Biological Sciences, 12: 25-29. https://
cutt.ly/xnsSNVD
Arce, M. J., Ávila, G. E., y López, C. C. (2008). Comportamiento productivo y
cambios morfológicos en vellosidades intestinales del pollo de engorda
a 21 días de edad con el uso de paredes celulares de Saccharomyces
cerevisiae. Notas de investigación. Revista Veterinaria México, 39:
223-228. https://cutt.ly/ansXGyP
Barroso, F. G., Haro, C. de, Sánchez, M. M. J., Venegas, E., Martínez, S. A.,
y Pérez B. C. (2014). The potential of various insect species for use
as food for sh. Aquaculture, 422: 193-201. https://doi.org/10.1016/j.
aquaculture.2013.12.024
Bedford, M. R. y Partridge, G. G. (2001). Enzymes in farm animal nutrition.
An effect of digestive tract conditions, feed processing and ingredients
on response to NSP enzymes. Journal of Animal Physiology and
Animal Nutrition, 85, 333-334. https://doi.org/10.1046/j.1439-
0396.2001.0335b.x
Bovera, F., Loponte R., Marono S., Piccolo, G., Parisi G., Laconisi, V., y Nizza,
A. (2016). Use of larvae meal as protein source in broiler diet: Effect
on growth performance, nutrient digestibility, and carcass and meat
traits. Journal of Animal Science, 94, 639-647. https://doi.org/10.2527/
jas.2015-9201
Carvajal, J. J. G., y Oviedo O. E. (2014). Efecto de una serina proteasa en
las dietas con el aumento de los niveles de inclusión de sorgo en el
rendimiento y la digestibilidad de nutrientes en pollos de engorde.
Revista Colombiana de Ciencia Animal, 7: 43-54. https://cutt.ly/
nns1yDy
Cho, J. H., Zhao, P., y Kim, I. (2012). Effects of Emulsier and Multi-enzyme in
Different Energy Densitydiet on Growth Performance, Blood Proles,
and Relative Organ Weight in Broiler Chickens. Journal of Agricultural
Science, 4, 161-168. https://doi.org/10.5539/JAS.V4N10P161
Choct, M., Y. Dersjant-Li, J. McLeish, M. Peisker. 2010. Soy oligosaccharides
and soluble non-starch polysaccharides: a review of digestion, nutritive
and anti-nutritive effects in pigs and poultry. Asian-Australas. J. Anim.
Sci. 23(10): 1386-1398. https://cutt.ly/Fns1CrZ
De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L.,
Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A.,
Zoccarato, I., Gasco, L., y Schiavone, A. (2015). Nutritional value of
two insect larval meals (Tenebrio molitor and Hermetia illucens) for
broiler chickens: Apparent nutrient digestibility, apparent ileal amino
acid digestibility and apparent metabolizable energy. Animal Feed
Science and Technology, 209, 211-218. https://cutt.ly/Wns19Lo
Dalólio, F. S., Moreira, J., Vaz, D. P., Albino, L. F. T., Valadares, L. R., Pires,
A. V. y Pinheiro S. R. F. (2016). Exogenous enzymes in diets for
broilers. Revista Brasileira de Saúde e Produção Animal, 17, 149-161.
https://doi.org/10.1590/S1519-99402016000200003
Elghandour, M., Tan, Z., Abu Hafsa, S., Adegbeye, M., Greiner, R., Ugbogu,
E., Cedillo Monroy, J. y Salem, A. (2020). Saccharomyces cerevisiae
as a probiotic feed additive to non and pseudo-ruminant feeding: a
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223903. January - March. ISSN 2477-9407.
6-6|
Oonincx, D. G. A. B.
y Finke, M. D. (2020). Nutritional value of insects and ways
to manipulate their composition. Journal of Insects as Food and Feed.
ISSN 2352-4588 online, https://doi.org/10.3920/JIFF2020.0050
Pieterse, E. y Pretorius, Q. (2014). Nutritional evaluation of dried larvae and pupae
meal of the housey (Musca domestica) using chemical-and broiler-based
biological assays. Animal Production Science, 54, 347-355. https://doi.
org/10.1071/AN12370
Pretorius, Q. (2011). The evaluation of larvae of Musca domestica (common
house y) as protein source for broiler production. Doctoral dissertation.
Stellenbosch, Stellenbosch University. https://cutt.ly/Uns8iqS
Reyes, S. N., Piad, B. R., González, N. H. D. y Ríos, M. (2014). Rendimiento de la
canal y morfometría del tracto gastrointestinal de broilers suplementados
con pared celular de levadura. Revista Cientíca La Calera, 14, 33-37.
https://cutt.ly/wns8acd
Romero, M. H., J. A. Sánchez, J. F. Moncayo. (2014). Evaluación de la mortalidad
y de las lesiones traumáticas en pollo de engorde bajo condiciones de
sacricio comercial. Rev. Biosalud, 13(1): 30-36. https://cutt.ly/7ns8fw5
Rumpold, B. A., y Schlüter, O. K. (2013). Nutritional composition and safety
aspects of edible insects. Molecular Nutrition & Food Research, 57, 802–
823. PMID: 23471778 https://doi.org/10.1002/mnfr.201200735
Schiavone, A., De Marco, M., Martínez, S., Dabbou, S., Renna, M., Madrid,
J., Hernández, F., Rotolo, L., Costa, P., Gai, F., y Gasco, L. (2017).
Nutritional value of a partially defatted and a highly defatted black soldier
y larvae (Hermetia illucens L.) meal for broiler chickens: apparent
nutrient digestibility, apparent metabolizable energy and apparent ileal
amino acid digestibility. Journal of Animal Science Biotechnology, 8, 1-9.
PMID: 28603614 PMCID: PMC5465574 https://doi.org/10.1186/s40104-
017-0181-5
SAGARPA. 2015. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca
y Alimentación. Proyecciones para el Sector Agropecuario de México,
09-18. https://cutt.ly/Pns8kEA
SAGARPA. 2007. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca
y Alimentación. Programa Especial para la Seguridad Alimentaria, 2-10.
Sánchez, S., y Torres, R. J. (2013). Diagnóstico y tipicación de unidades
familiares con y sin gallinas de traspatio en una comunidad de Huatusco,
Veracruz (México). Avances en Investigación Agropecuaria, 16, 64-74.
https://cutt.ly/Ens85N8
Sancho, D., Fernández, L. S., y Álvarez, M. G. (2015). Insectos y alimentación.
Larvas de Rhynchophorus palmarum L, un alimento de los pobladores
de la Amazonía Ecuatoriana. Entomotropica 30, 135-149. https://cutt.
ly/7ns4wfT
SEDESOL. Secretaría de Desarrollo Social del Gobierno de la República
Mexicana. 2010. https://cutt.ly/Sns4txG
Shareef, A. M., y Al-Dabbagh, A. S. A. (2009). Effect of probiotic (Saccharomyces
cerevisiae) on performance of broiler. Iraqi Journal Veterinary Science,
23, 23-29. Proceedings of the 5
th
Scientic Conference, College of
Veterinary Medicine, University of Mosul https://cutt.ly/Hns4iO7
UNA. 2015. Unión Nacional de Avicultores. Situación de la avicultura en México.
https://cutt.ly/undtCWn
USDA. 2015. United States Department of Agriculture. Panorama agroalimentario
del maíz. 3-26. https://cutt.ly/kndtZ4V
Veldkamp, T., Van Duinkerken, G., Van Huis, A., Lakemond, C., Ottevanger, E.,
Bosch, G., y Van Boekel, T. (2012). Insects as a Sustainable Feed Ingredient
in Pig and Poultry Diets: a Feasibility Study. No. 638. Wageningen UR
Livestock Research. Netherlands. https://cutt.ly/Kndyszq
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G.,
y Vantomme, P. (2013). Edible insects: future prospects for food and feed
security. Rome, Italy. 171: 123-125. https://cutt.ly/8ndoeHo
Zhang, B., Guo, Y., y Wang, Z. (2008). The modulating effect of beta-1, 3/1,
6-glucan supplementation in the diet on performance and immunological
responses of broiler chickens. Asian Australas. Journal of Animal Science,
21, 237-244. https://cutt.ly/MndyvYm