991
Esta publicación científica en formato digital es continuación de la Revista Impresa: Depósito legal pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2021, 38(4): 970-992. Octubre-Diciembre.
Moncayo et al. ISSN 2477-9407
Bumgardner, E., W. Kittichotirat, R.
Bumgarner and P. Lawrence. 2015.
Comparative genomic analysis of
seven Mycoplasma hyosynoviae
strains. Microbiologyopen, 4(2),343-
359.
Briner, A, P. Donohoue, A. Gomaa, K. Selle,
E. Slorach, C. Nye and R. Barrangou.
2014. Guide RNA functional
modules direct Cas9 activity and
orthogonality. Mol. Cell, 56(2),333-
339.
Briner, A., E. Henriksen and R. Barrangou.
2016. Prediction and validation of
native and engineered Cas9 guide
sequences. Cold Spring Harb. Protoc.,
2016(7),pdb-prot086785.
Chylinski, K., A. Le Rhun and E.
Charpentier. 2013. The tracrRNA
and Cas9 families of type II CRISPR-
Cas immunity systems.
RNA Biology,
10(5),726-737.
Chyou, T. and C. Brown. 2019. Prediction
and diversity of tracrRNAs from
type II CRISPR-Cas systems. RNA
Biology, 16(4),423-434.
Couvin, D., Bernheim, A., Toffano-Nioche,
C., Touchon, M., Michalik, J.,
Néron, B., Rocha, E., Vergnaud,
G., Gautheret, D. and Pourcel,
C. 2018. CRISPRCasFinder, an
update of CRISRFinder, includes
a portable version, enhanced
performance and integrates search
for Cas proteins. Nucleic Acids Res.,
46(W1),W246-W251.
De Vos, W. 2017. Microbe Prole: Akkermansia
muciniphila: a conserved intestinal
symbiont that acts as the gatekeeper
of our mucosa. Microbiology,
165(5),646-648.
Dupuis, N., E. Holmstrom and D. Nesbitt,
D. 2014. Molecular-crowding effects
on single-molecule RNA folding/
unfolding thermodynamics and
kinetics. Proc. Natl. Acad. Sci. U. S.
A., 111(23),8464-8469.
Høyland-Kroghsbo, N., K. Muñoz and B.
Bassler, B. 2018. Temperature, by
controlling growth rate, regulates
CRISPR-Cas activity in Pseudomonas
aeruginosa
. mBio, 9(6),e02184-18.
Ipoutcha, T., Tsarmpopoulos, I., Talenton,
V., Gaspin, C., Moisan, A., Walker,
C. A., Brownlie, J., Blanchard, A.,
Thebault, P. and Sirand-Pugnet, P.
2019. Multiple origins and specic
evolution of CRISPR/Cas9 systems in
minimal bacteria (Mollicutes). Front.
Microbiol., 10(2701),1-14.
Jinek, M., Chylinski, K., Fonfara, I., Hauer,
M., Doudna, J. A., and Charpentier,
E. 2012. A programmable dual-
RNA–guided DNA endonuclease in
adaptive bacterial immunity. Science,
337(6096),816-821.
Ka, D., Jang, D. M., Han, B. W., Bae, E. 2018.
Molecular organization of the type
II-A CRISPR adaptation module and
its interaction with Cas9 via Csn2.
Nucleic Acids Res., 46(18),9805-9815.
Kaushik, I., S. Ramachanrdan and S.
Srivastava. 2019. CRISPR-Cas9: A
multifaceted therapeutic strategy for
cancer treatment. Semin. Cell Dev.
Biol., 96(1),4-12.
Kunin, V., R. Sorek and P. Hugenholtz.
2007. Evolutionary conservation of
sequence and secondary structures
in CRISPR repeats. Genome Biol.,
8(4),R61.
Kube, M., C. Siewert, A. Migdoll, B. Duduk,
S. Holz, R. Rabus and R. Reinhardt.
2014. Analysis of the Complete
Genomes of Acholeplasma brassicae,
A. palmae and A. laidlawii and their
comparison to the obligate parasites
from ‘Candidatus Phytoplasma
’. J.
Mol. Microbiol. Biotechnol., 24(1),19-
36.
Lau, V. and J. Davie. 2017. The discovery and
development of the CRISPR system in
applications in genome manipulation.
Biochem. Cell Biol., 95(2),203–210.
Makarova, K., D. Haft, R. Barrangou, S.
Brouns, E. Charpentier, P. Horvath
and J. Van Der Oost. 2011. Evolution
and classication of the CRISPR–
Cas systems. Nat. Rev. Microbiol.,
9(6),467-477.
Mirabelli, P., L. Coppola and M. Salvatore.
2019. Cancer Cell Lines Are Useful
Model Systems for Medical Research.
Cancer, 11(8),1098-1116.