213
Esta publicación cientíca en formato digital es continuación de la Revista Impresa: Depósito legal pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2021, 38: 199-215. Enero-Marzo.
Fonseca et al. ISSN 2477-9407
Colares, G. S., N. Dell’Osbel, P. G. Wiesel,
G. A. Oliveira, P. H. Z. Lemos, F.
P. da Silva, C. A. Lutterbeck, L. T.
Kist y Ê. L. Machado. 2020. Floating
treatment wetlands: A review and
bibliometric analysis. Sci. Entorno
total. 714:136776.
Dinwiddie, E. y X. M. Liu. 2018. Examining
the Geologic Link of Arsenic
Contamination in Groundwater in
Orange County, North Carolina.
Front. Earth Sci. 6:111.
He, J. y J. P. Chen. 2014. A comprehensive
review on biosorption of heavy
metals by algal biomass: Materials,
performances, chemistry, and
modeling simulation tools. Bioresour.
Technol. 160: 67-78.
He, Y., H. Lin, X. Jin, Y. Dong y M. Luo.
2020. Simultaneous reduction of
arsenic and cadmium bioavailability
in agriculture soil and their
accumulation in Brassica chinensis L.
by using minerals. Ecotoxicol. Reinar.
Saf. 198:110660.
Ismail, I., T. Mostafa, A. Sulaymon y S.
Abbas. 2014. Bisorption of heavy
metals: A review. JCST. 3:74.
Kusin, F. M., S. N. M. S. Hasan, N. A. Nordin,
F. Mohamat-Yusuff y Z. Z. Ibrahim.
2019. Floating Vetiver island (FVI)
and implication for treatment system
design of polluted running water.
Appl. Ecol. Environ. Res. 17(1):497-
510.
Ladislas, S., C. Gérente, F. Chazarenc, J.
Brisson, y Y. Andrès, 2015. Floating
treatment wetlands for heavy metal
removal in highway stormwater
ponds. Ecol. Ing. 80:85-91.
Lara, S. y R. Navarro. Resultados y
Lecciones en Sistema Vetiver
para descontaminación de agua y
aumento de su disponibilidad para
riego. 2017. Fundación para la
Innovación Agraria (FIA). Chile. 48p.
Disponible en: https://www.opia.cl/
static/website/601/articles-87024_
archivo_01.pdf. Fecha de consulta:
diciembre 2019.
Li, Y., X. Zhu, X. Qi, B. Shu, X. Zhang, K.
Li, Y. Wei, F. Hao y H. Wang. 2020.
Efcient removal of arsenic from
copper smelting wastewater in form
of scorodite using copper slag. J.
Clean. Prod. 270:122428.
Martínez-Peña, L., y C. López-Candela. 2018.
Islas otantes como estrategia para el
establecimiento de plantas acuáticas
en el Jardín Botánico de Bogotá.
Gestión y Ambiente. 21(1):110-120.
Mathew, M., Sr. C. Rosary. M. Sebastian y
S. M. Cherian. 2016. Effectiveness
of Vetiver System for the Treatment
of Wastewater from an Institutional
Kitchen. Procedia Technology.
24:203-209.
Mondal, P., C. B. Majumder y B. Mohanty.
2006. Laboratory based approaches
for arsenic remediation from
contaminated water: Recent
developments. J. Hazard. Mater.
137(1):464-479.
Morales-Simfors, N., J. Bundschuh, I.
Herath, C. Inguaggiato, A. T. Caselli,
J. Tapia, F. E. A. Choquehuayta,
M. A. Armienta, M. Ormachea, E.
Joseph y D. L. López. 2019. Arsenic
in Latin America: A critical overview
on the geochemistry of arsenic
originating from geothermal features
and volcanic emissions for solving
its environmental consequences. Sci.
Total Environ. 716:135564.
Ning, R. Y. 2005. Arsenic in Natural Waters.
p. 81-83. In: J. H. Lehr y J. Keeley
(Eds.). Water Encyclopedia. First
edition. John Wiley & Sons, Inc.
Pilon-Smits, E. 2005. Phytoremediation.
Annu Rev Plant Biol. 56(1):15-39.
Pincetti-Zúniga, G. P., L. A. Richards, Y.
M. Tun, H. P. Aung, A. K. Swar, U.
P. Reh, T. Khaing, M. M. Hlaing, T.
A. Myint, M. L. Nwe y D. A. Polya.
2020. Major and trace (including
arsenic) groundwater chemistry in
central and southern Myanmar. Appl.
Geochemistry. 115:104535.
Prasad, M. N. V. 2003. Phytoremediation of
Metal-Polluted Ecosystems: Hype for
Commercialization. Russ. J. Plant
Physiol. 50(5):686-701.
Praveen, A., S. Mehrotra y N. Singh. 2019.
Mixed plantation of wheat and
accumulators in arsenic contaminated