Recibido el 15-12-2017 . Aceptado el 20-02-2018
*Corresponding author. Email: zeki.mut@bozok.edu.tr.
Evaluation of hay yield and quality traits of oat genotypes grown at different locations
Evaluación del rendimiento del heno y los rasgos de calidad de los genotipos de avena cultivados en diferentes localidades
Avaliação do rendimento de feno e características de qualidade dos genótipos de aveia cultivados em diferentes locais
Zeki Mut1*, Özge Doğanay Erbaş Köse1 and Hasan Akay2
1Department of Field Crops, Faculty of Agriculture, Bozok University. Yozgat 66100. Turkey. Email: zeki.mut@bozok.edu.tr, ozgedoganay. erbas@bozok.edu.tr. 2Department of Field Crops, Faculty of Agriculture, Ondokuz Mayis University. Samsun 55130. Turkey. Email: hasan.akay@ omu.edu.tr.
Abstract
The aim of this study was to evaluate hay yield and quality of local oat genotypes at different locations. Twenty-five oat genotypes were evaluated in a randomized block design with four replicates at three locations during the two growing years. The hay yield, crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), relative feed value (RFV) and macro minerals (Ca, K, P and Mg) differed significantly with genotype (G), location (L), and year (Y). The G × L interaction was significant (P<0.05) for hay yield, crude protein and Mg ratio. According to the combined results of location and years, among the genotypes, yield varied from 8.48 to 10.78 t·ha-1, crude protein from 93.7 to 119.4 g·kg-1, acid detergent fibre (ADF) from 336.3 to 371.9 g·kg-1 and neutral detergent fibre (NDF) from 553.0 to 588.7 g·kg-1. The relative feed value (RFV) ranged from 95.5 to 106.6. G10 (10.78 t·ha-1), G8 (10.42 t·ha-1), G24 (10.40 t·ha-1), G5 (10.33 t·ha-1), G15 (10.25 t·ha-1), G12 (10.10 t·ha-1), G6 (10.08 t·ha-1), G13 (10.03 t·ha-1), G4 and G18 (9.80 t·ha-1) and G14 (9.76 t·ha-1) numbered genotypes were specified as the high yield potential genotypes. Besides, among these genotypes, G10, G5, G15, G13, G4, G18 and G14 genotypes also showed superior performance in terms of quality characteristics. Furthermore, the results obtained for K, P, Ca and Mg concentrations in this study were adequate for ruminants.
Key words: oat genotypes, hay yield, quality, acid detergent fibre (ADF), neutral detergent fibre (NDF).
Resumen
El objetivo de este estudio fue evaluar la producción de heno y la calidad de local genotipos de avena en diferentes localidades. Fueron evaluados 25 genotipos de avena en un diseño de bloques al azar con cuatro repeticiones en tres localidades durante dos años consecutivos. La producción de heno, proteína cruda (PC), fibra ácido detergente (FAD), fibra neutro detergente (FND), valor relativo del alimento (VRA) y macro minerales (Ca, K, P y Mg) difirieron significativamente con el genotipo (G), la localidad (L) y el año (Y). La interacción G × L fue significativa (P<0,05) para la producción de heno, proteína cruda y Mg. Según los resultados la combinación de localidad y años, entre los genotipos, la producción de heno varió de 8,48 a 10,78 t·ha-1, proteína cruda de 93,7 a 119,4 g·kg-1, fibra ácido detergente (FAD) de 336,3 a 371,9 g·kg-1 y fibra neutro detergente (FND) de 553,0 a 588,7 g·kg-1. El valor relativo del alimento (VRA) fue de 95,5 a 106,6%. Los genotipos G10 (10,78 t·ha-1), G8 (10,42 t·ha-1), G24 (10,40 t·ha-1), G5 (10,33 t·ha-1), G15 (10,25 t·ha-1), G12 (10,10 t·ha-1), G6 (10,08 t·ha-1), G13 (10,03 t·ha-1), G4 y G18 (9,80 t·ha-1) y G14 (9,76 t·ha-1) fueron considerados como genotipos con alto potencial para la producción de heno. Además, los genotipos G10, G5, G15, G13, G4, G18 y G14 mostraron características superiores en términos de calidad. Los resultados obtenidos para las concentraciones de K, P, Ca y Mg en este estudio fueron adecuados para rumiantes.
Palabras clave: genotipos de avena, producción de heno, calidad, FAD, FND.
Resumo
O objetivo deste estudo foi avaliar a produção de feno e a qualidade dos genótipos locais de aveia em diferentes locais. Vinte e cinco genótipos de aveia foram avaliados em blocos ao acaso com quatro repetições em três locais durante os dois anos consecutivos. A produção de feno, proteína bruta (PC), fibra em detergente ácido (FAD), fibra em detergente neutro (FND), valor relativo do alimento (VRA) e macro minerais (Ca, K, P e Mg) diferiram significativamente com o genótipo ( G), a localidade (L) e o ano (Y). A interação G × L foi significativa (P<0,05) para a produção de feno, proteína bruta e Mg. De acordo com os resultados, a combinação de localidade e anos, entre genótipos, produção de feno variou de 8,48 a 10,78 t·ha-1, proteína bruta de 93,7 a 119,4 g·kg-1, fibra ácido detergente (FAD) de 336,3 a 371,9 g·kg-1 e fibra em detergente neutro (FND) de 553,0 a 588,7 g·kg-1. O valor relativo dos alimentos (VRA) foi de 95,5 a 106,6%. Os genótipos G10 (10,78 t·ha-1), G8 (10,42 t·ha-1), G24 (10,40 t·ha-1), G5 (10,33 t·ha-1), G15 (10,25 t·ha-1), G12 (10,10 t·ha-1), G6 (10,08 t·ha-1), G13 (10,03 t·ha-1), G4 e G18 (9,80 t·ha-1) e G14 (9,76 t·ha-1) foram considerados como genótipos com alto potencial de produção de feno. Além disso, os genótipos G10, G5, G15, G13, G4, G18 e G14 apresentaram características superiores em termos de qualidade. Os resultados obtidos para as concentrações de K, P, Ca e Mg neste estudo foram adequados para ruminantes.
Palavras-chave: genótipos de aveia, produção de feno, qualidade, FAD, FND.
The amount of roughage obtained from rangelands and forage crops in Turkey does not meet the feed requirements of livestock. The use of cereals (wheat, barley, oat, rye and triticale) as a feed source is an important alternative to resolving of the existing insufficient roughage. Oat is grown for both grain and forage for livestock feeding over a long time in many parts of the world (Stevens et al., 2004). In Turkey, oat is grown as both a sole crop and intercropped with annual forage legumes. Oat forage yield and quality are determined by numerous variable factors such as genotype, environment and management practices (Kim et al., 2006). Grain oat cultivars/genotypes were used as forage in some investigation (Chapko et al., 1991). Chapko et al. (1991) indicated that distinctive breeding program for forage quality cannot be continued, and then grain oat genotypes may satisfy forage needs. Also, they indicated that no relationship between forage yield and grain yield (Chapko et al., 1991). Chapko et al. (1991) and Aydın et al. (2010), however, reported a negative correlate between forage yield and quality. Quality forage must have high intake, digestibility, and efficiency of utilization (Ates, 2017). Acid detergent fiber (ADF) and neutral detergent fiber (NDF) are good indicators of fiber contents in forages. Acid detergent fiber, a measure of the digestible fraction, is an important measure of forage quality. But, the NDF or cell wall content is associated with dry biomass intake of the forage. Protein content is also an essential factor for determining feeding value of forage. Cereal forages are economic sources of digestible fiber, protein and minerals. Forage and animal scientists are also aware of the importance of the concentrations of Ca, Mg, K, Cu, and Zn, and the K/(Ca + Mg) ratio in diets for ruminants (Kidambi et al., 1989).
Local cultivars, is a significant natural genetic source, provide a many opportunities to breeders for developing a new varieties with a high yield and quality. Due to the climatic and geographic location, Turkey is the origin of many wild and cultivated plants. So the genetic diversity is very high (Tan, 1992). There are many different local and wild oat varieties in Turkey. Therefore, Turkey is considered to be one of the important origin centers of the oat (Dumlupınar et al., 2011). The purpose of this study was to characterize the hay yield and quality of local oat genotypes in various locations.
Materials and methods
In this study, a total of 25 oat genotypes (21 local cultivars and four registered varieties) were included. Local cultivars were selected according to disease and some agronomic characteristics among 261 local oat cultivars collected in previous years in the Central and West Black Sea Region of Turkey.
This study was performed in two successive years (2010-2011 and 2011-2012) at three locations, namely Amasya-Suluova (Amasya) (altitude 495 m, 40°50’ N, 35°39’ E), Samsun-Bafra (Bafra) (altitude 20 m, 41°34’ N, 35°55’ E) and Samsun-Kurupelit (Samsun) (altitude 195 m, 41°21’ N, 36°15’ E) (table 1).
Twenty-five oat genotypes were grown in a randomized complete block design with four replications at each location under rain fed conditions. Sowing was done with plot size of 7.2 m2, wherein 6 rows were sown within the plot, with 20 cm row spacing, with 550 seeds m2. Sowing dates Amasya, Bafra and Samsun locations were on October 20, November 4 and November 6 in 2010, and October 16, November 3 and November 7 in 2011, respectively. Experiments plots were fertilized 31.3 kg N·ha-1 and 80.0 kg P2O5·ha-1 at planting and 42.0 kg N·ha-1 applied at the beginning of the stem elongation stage. Herbicide was used for weed control at all sites. The four inner rows were harvested for forage by removing outer 50 cm of each row. Harvest was done in the late milk stage (Zadoks scale 77) according to the Zadoks scale (Zadoks et al., 1974).
A sub-sample (800 to 1000 g) randomly selected from each harvested plot was dried to calculate dry biomass yield for 72 h by forced-air drying oven at 65 °C. The dried samples were ground to pass through a 1 mm screen. Crude protein, ADF, NDF and Ca, K, Mg and P contents of samples were determined using near infrared reflectance spectroscopy (NIRS) (Poblaciones et al., 2008). Software options CENTER and SELECT (Win ISI II v.1.5, Foss NIR Systems, Silver Springs, MD, USA) was used for calibration equation development.
Relative feed value was estimated according to the following equations Lithourgidis et al. (2006). Dry biomass intake (DBI)= 120/%NDF dry biomass basis and digestible dry biomass (DDB)= 88.9 - (0.779 × %ADF dry biomass basis). Relative feed value (RFV) = %DDB × %DBI × 0.775.
Variance (ANOVA) was performed using MSTAT-C statistical software, and a comparison of the means was performed using the TUKEY test and the same software. Output of combined analysis of variance across location and year is given in table 2. Data from each location across two years was also analysed for each trait according to Steel et al. (1997).
Results and discussion
The combined analysis of variance for hay yield, crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), relative feed value (RFV) and some mineral contents (Ca, K, P and Mg) across locations for two years is given in table 2. The difference between years, locations, and genotypes for all of the traits investigated were statistically significant. The ANOVA also showed the G × L interaction was significant (P<0.05) for hay yield, crude protein and Mg.
Hay yield of tested oat genotypes grown at three locations in two consecutive years is presented in table 3 and 4. According to the average of two years, the hay yields of genotypes in Amasya, Bafra and Samsun locations varied between 6.67 to 9.69, 8.67 to 11.51, and 7.77 to 12.27 t·ha-1, respectively (table 3). This may result from the fact that the rainfall was much higher in Bafra and Samsun locations compared with Amasya location. Moreover, this result could be due primarily to air temperature and other factors. Similar findings were indicated by Contreras-Govea and Albrecht (2006) and Aydın et al. (2010). In Amasya location, the highest hay yields were obtained from genotypes G10, G8, G18, G13, G6 and G15, and the lowest hay yields were obtained from genotypes G2, G21, G20 and G11. In Bafra location, while the highest hay yields were obtained from genotypes G10, G5, G3, G24, G4 and G6, the lowest hay yields were obtained from genotypes G16, G20, G22, G14 and G21. In Samsun location, G2, G15, G14, G8, G12, G10 and G24 genotypes had the highest hay yield, but G3, G11, G23 and G21 genotypes had the lowest hay yield (figure 1). According to the combined result of locations and years, the hay yields of the genotypes ranged from 8.48 (G21) to 10.78 (G10) t·ha-1 (table 4).
The highest hay yield was obtained from the Bafra location with 10.26 t·ha-1 followed by Samsun location with 10.24 t·ha-1 and Amasya location with 8.35 t·ha-1 (table 3). According to the combined results of location and years, G10 (10.78 t·ha-1), G8 (10.42 t·ha-1), G24 (10.40 t·ha-1), G5 (10.33 t·ha-1), G15 (10.25 t·ha-1), G12 (10.10 t·ha-1), G6 (10.08 t·ha-1), G13 (10.03 t·ha-1), G4 (9.80 t·ha-1), G18 (9.80 t·ha-1) and G14 (9.76 t·ha-1) numbered genotypes had the highest hay yield, respectively (table 4). The hay yield was found in the first year higher than in the second year. The variation in hay yield of genotypes may be attributed to genetic characteristics and adaptability of these varieties to different environmental conditions. The significant variations among oat genotypes for hay yield have already been reported in studies conducted by Chapko et al. (1991), Kim et al. (2006), Aydın et al. (2010), Gill et al. (2013) and Mut et al. (2015).
Significant differences were found amongst years, locations and the genotypes regarding crude protein content, ADF, NDF and RFV. Crude protein content of oat genotypes grown in three locations in two consecutive years is presented in table 2. Crude protein content of forage is one of the most important criteria for hay quality evaluation (Assefa and Ledin, 2001; Mut et al., 2017). Based on the average of years, the protein content of genotypes in Amasya, Bafra and Samsun locations varied between 106.6 to 136.1, 66.0 to 105.3 and 99.9 to 132.5 g·kg-1, respectively (table 3). According to the combined result of locations and years, the protein contents of the genotypes varied from 93.7 (G9) to 119.4 (G13) g·kg-1. While the highest protein content was obtained from the genotypes G13 (119.4 g·kg-1), G19 (118.3 g·kg-1) and G22 (116.1 g·kg-1), respectively, the lowest protein content was obtained from the genotypes G9 (93.7 g·kg-1), G1 (95.9 g·kg-1), G3 (97.3 g·kg-1) and G24 (97.8 g·kg-1) (table 4). As shown in table 3, the highest protein content was obtained from the Amasya location (119.3 g·kg-1), while the lowest protein content was obtained from the Bafra location (86.2 g·kg-1). Protein content was in the second year higher than in the first year and this difference was statistically significant (P<0.01).
Acid detergent fiber (ADF), NDF and RFV values of oat genotypes grown in three locations for years are presented in table 3 and 4. Other important quality characteristics for forages are the concentrations of ADF and NDF (Assefa and Ledin, 2001; Mut et al., 2017). The hay fiber content, ADF and NDF, is a strong predictor of forage quality, since it is the poorly-digested portion in the cell wall. The ADF and NDF showed significant genotypes effects (table 2 and 4). Acid detergent fiber (ADF) and NDF contents of Amasya, Bafra and Samsun locations were found between 340.8 and 556.4, 364.9 and 592.7, and 352.5 and 570.9 g·kg-1, respectively (table 3). According to the average of locations in two years, the ADF and NDF contents of the genotypes ranged from 336.3 to 371.9 and 553.0 to 588.7 g·kg-1, respectively. ADF and NDF content of genotypes were 157 lower than Onal-Asci and Egritas (2017) results. The lowest ADF and NDF contents were obtained from genotypes G19 and G16, respectively, while the highest ADF and NDF contents were obtained from genotypes G24 and G1 (table 4). In this study, based on averages of locations, the ADF and NDF contents in first year were higher than those in second year (table 4).
The RFV is an index that is used to predict the intake and energy value of the forages and it is derived from the DDB and DBI. Forages with an RFV value over 151, between 150 to 125, 124-103, 102-87, 86-75, and fewer than 75 are considered as prime, premium, good, fair, poor, and reject, respectively (Horrocks and Vallentine, 1999). According to the combined result of years and locations, the RFV value of genotypes ranged from 95.5 (G24) to 106.6% (G16). With regard to the RFV values, nine genotypes (G16, G10, G19, G14, G2, G13, G11, G18 and G25) had values between 103.0 and 106.6%, which were in the good forage group (table 4). The highest RFV value was obtained from the Amasya location with 105.1%, while the lowest RFV value was obtained from the Bafra location with 96.0% (table 3). There was a significant difference in the RFV value between years, and the second year RFV value was found to be higher.
The Ca, K, P and Mg were significantly affected by genotypes, year, and location (table 2). According to the combined result of years and locations, K contents of the genotypes varied from 21.4 (G12) g·kg-1 to 23.6 (G3) g·kg-1. In Amasya, Bafra and Samsun locations, K contents were found 23.0, 24.2 and 20.6 g·kg-1, respectively (table 3). This conclusion is consistent with the findings of Aydın et al. (2010) and Mut et al. (2015). These results were higher than suggested values of 8.0 g·kg-1 by Tajeda et al. (1985). But, high K concentration may cause Mg deficiency (Lareda et al., 1983).
Phosphorus contents of the genotypes changed between 3.41 (G9) to 3.59 (G25) g·kg-1 (table 4). Phosphorus concentrations of 1.6 to 2.6 g·kg-1 for forage crops are recommended for ruminants (NRC, 2001). Results obtained for P concentration in this study were adequate for ruminants.
Calcium (Ca) contents of the genotypes varied from 4.55 (G2) to 6.13 (G14) g·kg-1.
The highest Ca content (5.82 g·kg-1) was obtained from the Amasya location while the lowest Ca content (4.56 g·kg-1) was obtained from the Bafra location (table 3). Basaran et al. (2017) indicated that mineral matter content of hay including phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were significantly different among cropping treatments (with exceptions) and between years. Turk et al. (2015) reported that forage crops should contain at least 3.0 g·kg-1 of Ca for ruminants. The American National Research Council (NRC, 2001) recommended that forage crops should contain 3.1 g·kg-1 Ca concentration for beef cattle. Results obtained for Ca concentration in this study were more than these recommended values.
According to the combined result of years and locations, Mg contents of the genotypes varied from 2.02 (G25) g·kg-1 to 2.36 (G14) g·kg-1. Mg contents were found 2.14, 2.13 and 2.21 g·kg-1 in Amasya, Bafra and Samsun locations, respectively (table 3). There was a significant difference in the Mg content between years, and the first year Mg content was found to be higher (table 4). Magnesium (Mg) concentrations for forage crops are recommended as 2.0 g·kg-1 for ruminants by Tajeda et al. (1985) and 1 g·kg-1 for beef cattle and 2 g·kg-1 for lactating cow by the NRC (2001). Grass tetany or hypomagnesemic tetany in cattle is caused by an imbalance of K, Ca and Mg in the diet. Mineral imbalances, deficiencies or excess and low bio-availability of essential minerals result in negative economic impacts when animal performance and health are compromised (Van Soest, 1983). Magnesium deficiency may lead to a reduction in weight gain, milk production and conception rate (Stuedemann et al., 1983).
Conclusions
Significant differences between the tested oat genotypes, locations and years were noticed for the following traits: hay yield, crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), relative feed value (RFV) and some mineral contents (Ca, K, P and Mg). G10, G8, G18, G13, G6 and G15 numbered genotypes in Amasya location, G10, G5, G3, G24, G4 and G6 genotypes in Bafra location, G2, G15, G14, G8, G12, G10 and G24 numbered genotypes in Samsun location had the highest hay yield. So, these genotypes can be recommended for these locations. G10, G8, G24, G5, G15, G12, G6, G13, G4, G18 and G14 numbered genotypes were specified as the high hay yield potential genotypes over locations. At the same time, among these genotypes, G10, G5, G15, G13, G4, G 18 and G14 genotypes also showed superior performance in terms of quality characteristics. On the other hand, to meet animal needs in oat-based forage systems, crossing high yielding genotypes with genotypes having high quality should be proposed for future breeding programs.
Literature cited
Assefa, G. and I. Ledin. 2001. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Anim. Feed Sci. Technol. 92:95-111.
Ates, S. 2017. Slope aspect has effects on vegetation and forage traits of anthropogenic pasture under two grazing treatments. Rev. Fac. Agron.(LUZ) 34: 236-252.
Aydın, N., Z. Mut, H. Mut and I. Ayan. 2010. Effect of autumn and spring sowing dates on hay yield and quality of oat (Avena sativa L.) genotypes. J. Anim. Vet. Adv. 9(10):1539-1545.
Basaran, U., M. Dogrusoz, E. Gulumser and H. Mut. 2017. Hay yield and quality of intercropped sorghum-sudan grass hybrid and legumes with different seed ratio. Turk. J. Field Crops. 22(1):47-53.
Chapko, L.B., M.A. Brinkman and K.A. Albrecht. 1991. Genetic variation for forage yield and quality among grain oat genotypes harvested at early heading. Crop Sci. 31:874-878.
Contreras-Govea, F.E. and K.A. Albrecht. 2006. Forage production and nutritive value of oat in autumn and early summer. Crop Sci. 46:2382-2386.
Dumlupınar, Z., H. Meral, R. Kara, T. Dokuyucu and A. Akkaya. 2011. Evaluation of Turkish oat landraces based on grain yield, yield components and some quality traits, Turk. J. Field Crops 16(2):190-196.
Gill, K.S., A.T. Omokanye, J.P. Pettyjohn and M. Elsen. 2013. Agronomic performance and beef cattle nutrition suitability of forage oat varieties grown in the Peace Region of Alberta, Canada. J. Agric. Sci. 5(7):128-145.
Horrocks, R.D. and J.F. Vallentine. 1999. Harvested Forages. Academic Press, London, UK.
Kidambi, S.P., A.G. Matches and T.C. Griggs. 1989. Variability for Ca, Mg, K, Cu, Zn, and K/(Ca+Mg) ratio among 3 wheatgrass and sainfoin in the Southern high plains. J. Range Manage. 2:312-316.
Kim, J.D., S.G. Kim, S.J. Abuel, C.H. Kwon, C.N. Shin, K.H. Ko and B.G. Park. 2006. Effect of location, season, and variety on yield and quality of forage oat. Asian-Aust. J. Anim. Sci. 19(7):970-977.
Lareda, C.M.A., G.A. Ardilla and V.J. Alveraz. 1983. Variation in mineral concentrations in grasses in the cattle farming area of the Caribbean. Revista Instituto Colombiano Agropecuario 18:105-113.
Lithourgidis, A.S., I.B. Vasilakoglou, K.V. Dhima, C.A. Dordas and M.D. Yiakoulaki. 2006. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 99:106-113.
Mut, Z., H. Akay and O.D. Erbas. 2015. The yield and quality of oat (Avena sativa L.) genotypes of worldwide origin. Int. J. Plant Prod. 9(4):507-522.
Mut, H., U. Basaran, M. Dogrusoz, E. Gulumser and I. Ayan. 2017. Evaluatıon and characterızatıon of perennıal ryegrass (Lolium perenne L.) genotypes collected from natural flora. Rom. Agric. Res. 34:1-5.
National Research Council (NRC). 2001. Nutrient requirements of beef cattle. National Research Council, 7th Rev. Ed. National Academy Press, NAS-NRC, Washington, DC, USA.
Onal-Asci, O. and O. Egritas. 2017. Determination of forage yield, some quality properties and competition in common vetch-cereal mixtures. JAS. (23)2:442-452.
Poblaciones, M.J., S. Rodrigo, N. Simoes, M.M. Tavares-de-Sousa, A. Bagulho and L. Olea. 2008. Instantaneous determination of chemical composition of Festuca sp. and Dactylis sp. at two different cut times using near infrared spectroscopy (NIRS). Options Mediterraneennes, Series A. 79:227-230.
Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and procedures of statistics, a biometrical approach. 3rd edition. McGraw-Hill Co. Inc., New York NY.
Stevens, E.J., K.W. Armstrong, H.J. Bezar, W.B. Griffin and J.G. Hampton. 2004. Fodder oats: A world overview. p. 11-18 In: Suttie J.M. and S.G. Reynolds (Eds.). Plant Production and Protection Series. No. 33. FAO, Rome, Italy.
Stuedemann, J.A., S.R. Wilkinson, H. Cioria and A.B. Caudle. 1983. Effect of levels of nitrogen fertilization of Kentucky-31 tall fescue (Festuca arundinacea Schreb.) on brood cow health. Proceedings of the International Grassland Congress, Westwiev Press, Lexington. p. 728-732.
Tajeda, R., L.R. Mcdowell, F.G. Martin and J.H. Conrad. 1985. Mineral element analyses of various tropical forages in Guatemala and their relationship to soil concentrations. Nut. Rep. Int. 32:313-324.
Tan, A. 1992. Plant diversity and plant genetic resources in Turkey. Anadolu JAARI. 2:50-64.
Turk, M., S. Albayrak and Y. Bozkurt. 2015. The change in the forage quality of alfalfa (Medicago sativa L.) in grazing and non-grazing artificially established pastures. YYU. J. Agr. Sci. 25(1):69-77.
Van Soest, P.J. 1983. Nutritional ecology of the ruminant. O & B Books, Corvallis.
Zadoks, J.C., T.T. Chang and C.F. Konzak. 1974. A decimal code for growth stages cereals. Weed Res. 14:415-421.
Introdución
La cantidad de forraje obtenido de pastizales y cultivos forrajeros en Turquía no cumple con los requisitos de alimentación del ganado. El uso de cereales (trigo, cebada, avena, centeno y triticale) como fuente de alimento es una alternativa importante para resolver la insuficiencia de la fibra existente. La avena se ha cultivado como grano, así como forraje para la alimentación del ganado durante mucho tiempo en muchas partes del mundo (Stevens et al., 2004). En Turquía, la avena se cultiva como monocultivo o intercalado con leguminosas forrajeras anuales. El rendimiento y la calidad del forraje de avena están determinados por numerosos factores variables, como el genotipo, el ambiente y las prácticas de manejo (Kim et al., 2006). Las variedades/genotipos de avena para grano han sido utilizados como forraje en algunas investigaciones (Chapko et al., 1991). Chapko et al. (1991) indicaron que el programa de siembra distintivo para la calidad del forraje no puede continuarse, y que los genotipos de grano de avena podrían satisfacer las necesidades del mismo. Además, indicaron que no hubo relación entre el rendimiento de forraje y el rendimiento de grano (Chapko et al., 1991). Chapko et al. (1991) y Aydın et al. (2010); sin embargo, reportaron una correlación negativa entre el rendimiento y la calidad del forraje. El forraje de calidad debe tener una alta ingesta, digestibilidad y eficiencia de utilización (Ates, 2017). La fibra ácido detergente (FAD) y la fibra neutro detergente (FND) son buenos indicadores del contenido de fibra en los forrajes. La FAD, constituye una medida de la fracción digerible, es una medida importante de la calidad del forraje. Pero, la FND o el contenido presente en la pared celular se asocia con la ingesta de biomasa seca del forraje. El contenido de proteína también es un factor esencial para determinar el valor de alimentación del forraje. Los forrajes de cereal son fuente económica de fibra digerible, proteínas y minerales. Los forrajeros y científicos del área animal están conscientes de la importancia de las concentraciones de Ca, Mg, K, Cu y Zn, y la relación K/(Ca + Mg) en las dietas para rumiantes (Kidambi et al., 1989).
Los cultivares locales, son una fuente genética natural importante, brindan muchas oportunidades a los mejoradores para desarrollar nuevas variedades con alto rendimiento y calidad. Debido a la ubicación climática y geográfica, Turquía es el origen de muchas plantas silvestres y cultivadas. Entonces la diversidad genética es muy alta (Tan, 1992). Hay muchas variedades de avena locales y silvestres en Turquía. Por lo tanto, se considera que Turquía es uno de los principales centros de origen de la avena (Dumlupınar et al., 2011). El propósito de este estudio fue caracterizar el rendimiento y la calidad del heno de los genotipos locales de avena en varias localidades.
Materiales y métodos
En este estudio, se incluyeron un total de 25 genotipos de avena (21 cultivares locales y cuatro variedades registradas). Los cultivares locales se seleccionaron de acuerdo con la afección y algunas características agronómicas entre los 261 cultivares de avena locales recolectados en años anteriores en la región central y occidental del Mar Negro en Turquía.
Este estudio se realizó en dos años sucesivos (2010-2011 y 2011-2012) en tres lugares, a saber, Amasya-Suluova (Amasya) (altitud 495 m, 40°50’ N, 35°39’ E), Samsun-Bafra (Bafra) (altitud 20 m, 41°34’ N, 35°55’ E) y Samsun-Kurupelit (Samsun) (altitud 195 m, 41°21’ N, 36°15’ E) (cuadro 1).
Veinticinco genotipos de avena se cultivaron en un diseño de bloques completos al azar con cuatro repeticiones en cada ubicación, en condiciones de lluvia. La siembra se realizó con un tamaño de parcela de 7,2 m2, en el que se sembraron 6 hileras dentro de la parcela, con un espaciado de hileras de 20 cm, con 550 semillas·m2. Las fechas de siembra para las localidades fueron en Amasya, Bafra y Samsun, el 20 de octubre, el 4 de noviembre y el 6 de noviembre de 2010, y el 16 de octubre, el 3 de noviembre y el 7 de noviembre de 2011, respectivamente. Los lotes experimentales fueron fertilizados con 31,3 kg N·ha-1 y 80,0 kg P2O5·ha-1 al momento de la siembra y 42,0 kg N·ha-1 aplicado al comienzo de la etapa de elongación del tallo. Se utilizó herbicidas para el control de malezas en todas las localidades. Las cuatro hileras internas se cosecharon para forraje, eliminando los 50 cm externos de cada hilera. La cosecha se realizó en la etapa de leche tardía (escala 77) de acuerdo con la escala de Zadoks (Zadoks et al., 1974).
Una submuestra (800 a 1000 g) seleccionada al azar de cada parcela recolectada, se secó para calcular el rendimiento de biomasa seca durante 72 h mediante estufa de secado con aire forzado a 65 °C. Las muestras secas se trituraron para pasar a través de un tamiz de 1 mm. La proteína cruda, FAD, FND y Ca, K, Mg y P contenidos de las muestras se determinaron usando espectroscopía de reflectancia cercano al infrarrojo (NIRS) (Poblaciones et al., 2008). Los softwares CENTER y SELECT (Win ISI II v.1.5, Sistemas Foss NIR, Silver Springs, MD, USA) fueron utilizados para el desarrollo de la ecuación de calibración.
El valor relativo del alimento se estimó de acuerdo con las ecuaciones de Lithourgidis et al. (2006). Ingesta de biomasa seca (IBS)= 120/% FND de biomasa seca base y biomasa seca digerible (BSD)= 88,9 - (0,779 × %FAD de biomasa seca) base. Valor relativo del alimento (VAR)= %BSD × %IBS × 0,775.
La varianza (ANOVA) se realizó usando el software estadístico MSTAT-C, y se realizó una comparación de las medias usando la prueba de Tukey con el mismo software. El resultado del análisis combinado de la varianza a través de la ubicación y el año se presenta en el cuadro 2. Los datos de cada ubicación durante dos años también se analizaron para cada rasgo de acuerdo con Steel et al. (1997).
Resultados y discusión
El análisis combinado de varianza para el rendimiento de heno, proteína cruda, FAD, FND, valor relativo del alimento y algunos contenidos minerales (Ca, K, P y Mg) en ubicaciones durante dos años se presenta en el cuadro 2. La diferencia entre años, ubicaciones y genotipos para todos los rasgos investigados fue estadísticamente significativa. El ANOVA también mostró que la interacción G × L fue significativa (P<0,05) para el rendimiento de heno, proteína cruda y Mg.
En los cuadros 3 y 4 se presenta el rendimiento de heno de los genotipos de avena evaluados, cultivados en tres localidades en dos años consecutivos. Según el promedio de dos años, los rendimientos de heno de los genotipos en las localidades de Amasya, Bafra y Samsun variaron entre 6,67 a 9,69; 8,67 a 11,51 y 7,77 a 12,27 t·ha-1, respectivamente (cuadro 3). Esto podría deberse al hecho de que la lluvia fue mucho más alta en las ubicaciones de Bafra y Samsun en comparación con la ubicación de Amasya. Además, este resultado podría deberse principalmente a la temperatura del aire y otros factores. Hallazgos similares fueron indicados por Contreras-Govea y Albrecht (2006) y Aydın et al. (2010). En la locación de Amasya, los mayores rendimientos de heno se obtuvieron de los genotipos G10, G8, G18, G13, G6 y G15, y los rendimientos de heno más bajos se obtuvieron de los genotipos G2, G21, G20 y G11. En la locación de Bafra, mientras que los mayores rendimientos de heno se obtuvieron de los genotipos G10, G5, G3, G24, G4 y G6, los rendimientos de heno más bajos se obtuvieron de los genotipos G16, G20, G22, G14 y G21. En la ubicación de Samsun, los genotipos G2, G15, G14, G8, G12, G10 y G24 tuvieron el mayor rendimiento de heno, pero los genotipos G3, G11, G23 y G21 tuvieron el rendimiento de heno más bajo (figura 1). De acuerdo con el resultado combinado de ubicaciones y años, los rendimientos de heno de los genotipos variaron de 8,48 (G21) a 10,78 (G10) t·ha-1 (cuadro 4).
El mayor rendimiento de heno se obtuvo de la localidad de Bafra con 10,26 t·ha-1 seguido de la localidad de Samsun con 10,24 t·ha-1 y la ubicación de Amasya con 8,35 t·ha-1 (cuadro 3). De acuerdo con los resultados combinados de ubicación y años, G10 (10,78 t·ha-1), G8 (10,42 t·ha-1), G24 (10,40 t·ha-1), G5 (10,33 t·ha-1), G15 (10,25 t·ha-1), G12 (10,10 t·ha-1), G6 (10,08 t·ha-1), G13 (10,03 t·ha-1), G4 (9,80 t·ha-1), G18 (9,80 t·ha-1) y G14 (9,76 t·ha-1) los genotipos numerados tuvieron el mayor rendimiento de heno, respectivamente (cuadro 4). El rendimiento de heno se encontró que fue más elevado en el primer año con respecto al segundo año. La variación en el rendimiento de heno de los genotipos se podría atribuir a las características genéticas y la adaptabilidad de estas variedades a diferentes condiciones ambientales. Las variaciones significativas entre los genotipos de avena para el rendimiento del heno ya han sido reportadas en estudios conducidos por Chapko et al. (1991), Kim et al. (2006), Aydın et al. (2010), Gill et al. (2013) y Mut et al. (2015).
Se encontraron diferencias significativas entre los años, las ubicaciones y los genotipos con respecto al contenido de proteína cruda, FAD, FND y VRA. El contenido de proteína cruda de los genotipos de avena cultivados en tres localidades en dos años consecutivos se presenta en el cuadro 2. El contenido de proteína cruda del forraje fue uno de los criterios más importantes para la evaluación de la calidad del heno (Assefa and Ledin, 2001; Mut et al., 2017). Con base en el promedio de años, el contenido de proteína de los genotipos en las localidades de Amasya, Bafra y Samsun varió entre 106,6 a 136,1; 66,0 a 105,3 y 99,9 a 132,5 g·kg-1, respectivamente (cuadro 3). De acuerdo con el resultado combinado de ubicaciones y años, el contenido proteico de los genotipos varió de 93,7 (G9) a 119,4 (G13) g·kg-1. Mientras que el mayor contenido de proteína fue obtenido de los genotipos G13 (119,4 g·kg-1), G19 (118,3 g·kg-1) y G22 (116,1 g·kg-1), respectivamente, el menor contenido de proteína se obtuvo de los genotipos G9 (93,7 g·kg-1), G1 (95,9 g·kg-1), G3 (97,3 g·kg-1) y G24 (97,8 g·kg-1) (cuadro 4). Como se muestra en el cuadro 3, el mayor contenido de proteína se obtuvo de la localidad de Amasya (119,3 g·kg-1), mientras que el menor contenido de proteína se obtuvo de la localidad de Bafra (86,2 g·kg-1). El contenido de proteína fue en el segundo año más alto que en el primer año y esta diferencia fue estadísticamente significativa (P<0,01).
Los valores de FAD, FND y VRA de genotipos de avena cultivados en tres localidades durante años se presentan en los cuadros 3 y 4. Otras características de calidad importantes para los forrajes fueron las concentraciones de FAD y FND (Assefa y Ledin, 2001; Mut et al., 2017). El contenido de fibra de heno, FAD y FND, es un fuerte predictor de la calidad del forraje, ya que es la parte poco digerida en la pared celular. La FAD y el FND mostraron efectos de genotipos significativos (cuadros 2 y 4). La FAD y el contenido de FND de las locaciones de Amasya, Bafra y Samsun se encontraron entre 340,8 y 556,4; 364,9 y 592,7; y 352,5 y 570,9 g·kg-1, respectivamente (cuadro 3). De acuerdo con el promedio de las localidades en dos años, los contenidos de FND y FND de los genotipos variaron de 336,3 a 371,9 y 553,0 a 588,7 g·kg-1, respectivamente. El contenido de ADF y NDF de los genotipos fue 157 más bajo que los resultados de Onal-Asci y Egritas (2017). Los contenidos más bajos de FAD y FND se obtuvieron de los genotipos G19 y G16, respectivamente, mientras que los contenidos más altos de FAD y FND se obtuvieron de los genotipos G24 y G1 (cuadro 4). En este estudio, según los promedios de las localidades, los contenidos de FAD y FND en el primer año fueron más altos que los del segundo año (cuadro 4).
La VRA es un índice que se usa para predecir el consumo y el valor energético de los forrajes y se deriva de BSD y IBS. Los forrajes con un valor de VRA superior a 151, entre 150 a 125, 124-103, 102-87, 86-75 y menos de 75 se consideraron de primera calidad, premium, buenos, regulares, pobres y rechazados, respectivamente (Horrocks and Vallentine, 1999). De acuerdo con el resultado combinado de años y ubicaciones, el valor de VRA de los genotipos varió de 95,5 (G24) a 106,6% (G16). Con respecto a los valores de VRA, nueve genotipos (G16, G10, G19, G14, G2, G13, G11, G18 y G25) presentaron valores entre 103,0 y 106,6%, que se encontraron en el grupo de buen forraje (cuadro 4). El valor más alto de VRA fue obtenido de la locación de Amasya con 105,1%, mientras que el valor más bajo de VRA se obtuvo de la localidad de Bafra con 96,0% (cuadro 3). Hubo diferencia significativa en el valor de VRA entre años, y el valor VRA del segundo año resultó ser mayor.
El Ca, K, P y Mg se vieron significativamente afectados por genotipos, año y ubicación (cuadro 2). De acuerdo con el resultado combinado de años y ubicaciones, el contenido de K de los genotipos varió de 21,4 (G12) g·kg-1 a 23,6 (G3) g·kg-1. En las locaciones de Amasya, Bafra y Samsun locations, Los contenidos de K se encontraron 23,0, 24,2 y 20,6 g·kg-1, respectivamente (cuadro 3). Esta conclusión fue consistente con los hallazgos de Aydın et al. (2010) y Mut et al. (2015). Estos resultados fueron más altos que los valores sugeridos de 8,0 g·kg-1 por Tajeda et al. (1985). Pero, la alta concentración de K podría causar deficiencia de Mg (Lareda et al., 1983).
Los contenidos de fósforo (P) de los genotipos cambiaron entre 3,41 (G9) a 3,59 (G25) g·kg-1 (cuadro 4). Concentraciones de fósforo (P) de 1,6 a 2,6 g·kg-1 para cultivos forrajeros se recomiendan para rumiantes (NRC, 2001). Los resultados obtenidos para la concentración de P en este estudio fueron adecuados para los rumiantes. Los contenidos de CA de los genotipos variaron de 4,55 (G2) a 6,13 (G14) g·kg-1.
El mayor contenido de Ca (5,82 g·kg-1) fue obtenido de la localidad de Amasya mientras que el contenido de Ca más bajo (4,56 g·kg-1) fue obtenido en la localidad de Bafra (cuadro 3). Basaran et al. (2017) indicaron que el contenido de materia mineral del heno incluido fósforo, potasio, calcio y magnesio, fueron significativamente diferentes entre los tratamientos de cultivo (con excepciones) y entre los años. Turk et al. (2015) informaron que los cultivos de forraje deben contener al menos 3,0 g·kg-1 de Ca para los rumiantes. El Consejo Nacional de Investigación de los Estados Unidos (NRC, 2001) recomendó que los cultivos forrajeros deberían contener una concentración de 3,1 g·kg-1 Ca para ganado de carne. Los resultados obtenidos para la concentración de Ca en este estudio fueron más elevados que estos valores recomendados.
De acuerdo con el resultado combinado de años y ubicaciones, el contenido de Mg de los genotipos varió de 2,02 (G25) g·kg-1 a 2,36 (G14) g·kg-1. Los contenidos de Mg se encontraron 2,14, 2,13 y 2,21 g·kg-1 en las locaciones de Amasya, Bafra y Samsun, respectivamente (cuadro 3). Hubo diferencias significativas en el contenido de Mg entre los años, y el primer año el contenido de Mg fue mayor (cuadro 4). Las concentraciones de Mg para cultivos de forraje recomendadas por Tajeda et al. (1985) correspondieron a 2,0 g·kg-1 para los rumiantes y 1 g·kg-1 para el ganado de carne y 2 g·kg-1 para vaca lactante, según la NRC (2001). La tetania de hierba o tetania hipomagnesémica en el ganado es causada por un desequilibrio de K, Ca y Mg en la dieta. Los desequilibrios minerales, las deficiencias o el exceso y la baja biodisponibilidad de los minerales esenciales tuvieron un impacto económico negativo cuando el rendimiento y la salud de los animales se vio comprometida (Van Soest, 1983). La deficiencia de magnesio podría conducir a una reducción en el aumento de peso, la producción de leche y la tasa de concepción (Stuedemann et al., 1983).
Conclusiones
Se observaron diferencias significativas entre los genotipos de las avenas evaluadas, localidad y años para las siguientes variables: rendimiento del heno, proteína cruda, fibra ácido detergente, fibra neutra detergente, valor relativo del alimento y algunos contenidos minerales (Ca, K, P y Mg). Genotipos numerados G10, G8, G18, G13, G6 y G15 en la localidad Amasya, genotipos numerados como A103, G5, G3, G24, G4 y G6 localizados en Bafra, genotipos numerados G2, G15, G14, G8, G12, G10 y G24 en la localidad de Samsun tuvieron el mayor rendimiento de heno. Por lo tanto, estos genotipos se pueden recomendar para estas localidades. Los genotipos numerados G10, G8, G24, G5, G15, G6, G13, G4, G18 y G14 se especificaron como los genotipos de alto potencial de rendimiento de heno común para estos lugares. Al mismo tiempo, entre estos genotipos, los genotipos G10, G5, G15, G13, G4, G 18 y G14 también mostraron un rendimiento superior en términos de características de calidad. Por otro lado, para satisfacer las necesidades de los animales en los sistemas de forraje a base de avena, se debería proponer el cruce de genotipos de alto rendimiento con genotipos de alta calidad para futuros programas de mejoramiento.
Fin de la versión Español
Table 1. Agro-climatic characteristics of testing environments.
Cuadro1. Características agroclimáticas de los entornos de prueba.
Growing season |
Location |
pH |
Soil textures |
Organic matter (%) |
P (Kg·ha-1) |
K (Kg·ha-1) |
Altitude (m) |
Prediction (mm) |
2010-2011 |
Amasya-Suluova |
7.65 |
clayey loam |
2.56 |
75.2 |
1268.1 |
495 |
634.4 |
2011-2012 |
Amasya-Suluova |
7.45 |
clayey loam |
2.47 |
76.4 |
1210.1 |
495 |
415.0 |
2010-2011 |
Samsun- Bafra |
6.95 |
clayey loam |
2.75 |
94.0 |
559.1 |
20 |
854.4 |
2011-2012 |
Samsun-Bafra |
7.15 |
clayey loam |
2.85 |
92.6 |
684.7 |
20 |
945.6 |
2010-2011 |
Samsun-Kurupelit |
7.10 |
clayey |
1.98 |
71.2 |
356.4 |
195 |
788.2 |
2011-2012 |
Samsun-Kurupelit |
6.75 |
clayey |
2.12 |
74.6 |
369.6 |
195 |
804.2 |
Table 2. Mean squares of combined analysis of variance for hay yield, quality traits and some macroelements of 25 oat genotypes tested across three locations in two years.
Cuadro 2. Promedio de los análisis de varianza combinados para rendimiento de heno, rasgos de calidad y algunos macroelementos de 25 genotipos de avena evaluados en tres ubicaciones en dos años.
Source of variation |
df |
HY |
CP |
ADF |
NDF |
RFV |
K |
P |
Ca |
Mg |
Year (Y) |
1 |
26.8* |
106123.3** |
439508.5** |
20992.3** |
12437.88** |
730.9** |
132.2** |
37.9** |
4.6** |
Location (L) |
2 |
240.1** |
66625.5** |
29273.4** |
74885.0** |
6059.40** |
643.0** |
8.5** |
81.2** |
3.4** |
Y × L |
2 |
22.6* |
18444.9** |
22733.0** |
79889.2** |
4122.9** |
101.9** |
4.6** |
83.7** |
5.7** |
Rep (Y × L) |
18 |
4.0 |
214.4 |
1976.4 |
2257.1 |
99.12 |
9.8 |
0.04 |
1.72 |
0.05 |
Genotype (G) |
24 |
15.0** |
1020.5* |
2483.9** |
3769.3* |
365.3* |
27.2* |
0.13* |
4.76** |
1.25** |
Y × G |
24 |
2.9 |
204.8 |
1911.4 |
2563.2 |
216.9* |
10.8* |
0.09* |
1.94* |
0.15* |
L × G |
48 |
6.3* |
357.7* |
1194.8 |
1731.1 |
149.3 |
8.5 |
0.06 |
1.12 |
0.10* |
Y × L × G |
48 |
3.0 |
328.6* |
1048.6 |
1796.2 |
135.4 |
9.1 |
0.07 |
1.15 |
0.16* |
Error |
432 |
3.2 |
191.6 |
976.1 |
1724.3 |
138.2 |
6.8 |
0.05 |
0.93 |
0.06 |
Total |
599 |
HY= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium. *,**= significant and highly significant 5% and 1% probability level, respectively. Df= degrees of freedom.
Table 3. Minimum, maximum and mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years.
Location |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
|
Min |
6.67 |
106.6 |
315.5 |
529.8 |
97.0 |
20.2 |
3.39 |
4.31 |
1.97 |
|
Amasya |
Max |
9.69 |
136.1 |
363.8 |
585.6 |
113.3 |
24.9 |
3.67 |
6.74 |
2.39 |
Mean |
8.35 b |
119.3 a |
340.8 c |
556.4 b |
105.1 a |
23.0 b |
3.52 b |
5.82 a |
2.17 ab |
|
Min |
8.67 |
66.0 |
334.6 |
556.3 |
86.7 |
22.3 |
3.14 |
3.86 |
1.91 |
|
Bafra |
Max |
11.51 |
105.3 |
393.8 |
628.5 |
106.5 |
25.9 |
3.47 |
5.11 |
2.44 |
Mean |
10.26 a |
86.2 c |
364.9 a |
592.7 a |
96.0 b |
24.2 a |
3.31 c |
4.56 c |
2.13 b |
|
Min |
7.77 |
99.9 |
328.8 |
536.5 |
93.3 |
18.7 |
3.53 |
4.48 |
2.01 |
|
Samsun |
Max |
12.27 |
132.5 |
379.5 |
593.4 |
111.6 |
22.5 |
3.86 |
6.59 |
2.51 |
Mean |
10.24 a |
115.9 b |
351.7 b |
563.6 b |
102.8 a |
20.6 c |
3.72 a |
5.34 b |
2.21 a |
Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Table 4. Mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years.
Genotype /Code |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
||||||||||
G1 |
Düzce-Center1 |
9.55 |
b-g |
95.9 |
jk |
371.2 |
ab |
588.7 |
a |
96.2 |
ef |
22.4 |
a-e |
3.54 |
abc |
5.29 |
b-f |
2.07 |
fg |
G2 |
Düzce-Center1 |
9.73 |
b-f |
107.8 |
d-g |
346.0 |
e-h |
557.3 |
ef |
104.3 |
abc |
22.7 |
a-e |
3.46 |
abc |
4.55 |
h |
2.25 |
a-d |
G3 |
Düzce-Gümüşova 1 |
8.98 |
e-h |
97.3 |
ijk |
364.1 |
a-d |
583.2 |
a-d |
97.9 |
c-f |
23.6 |
a |
3.55 |
ab |
5.39 |
b-e |
2.10 |
efg |
G4 |
Bolu-Göynük 1 |
9.80 |
a-e |
109.1 |
c-g |
349.3 |
c-h |
564.5 |
b-f |
102.8 |
a-e |
22.7 |
a-e |
3.58 |
a |
5.11 |
b-g |
2.15 |
c-g |
G5 |
Bolu-Yeniçağa1 |
10.33 |
a-b |
112.2 |
a-d |
352.6 |
c-h |
567.1 |
a-f |
102.1 |
a-f |
23.3 |
ab |
3.50 |
abc |
5.22 |
b-g |
2.17 |
c-f |
G6 |
Zonguldak-Center1 |
10.08 |
a-d |
106.2 |
d-g |
350.9 |
c-h |
569.6 |
a-f |
101.9 |
a-f |
22.6 |
a-e |
3.52 |
abc |
5.49 |
bcd |
2.20 |
b-f |
G7 |
Zonguldak-Ereğli1 |
9.46 |
b-h |
105.2 |
d-h |
353.9 |
b-h |
573.8 |
a-f |
100.8 |
a-f |
22.8 |
a-e |
3.53 |
abc |
4.96 |
d-h |
2.16 |
c-f |
G8 |
Zonguldak-Çaycuma1 |
10.42 |
ab |
105.1 |
d-i |
356.9 |
a-g |
574.2 |
a-f |
100.3 |
a-f |
22.7 |
a-e |
3.50 |
abc |
5.39 |
b-e |
2.12 |
d-g |
G9 |
Zonguldak-Gökçebey1 |
9.61 |
c-g |
93.7 |
k |
366.1 |
abc |
576.1 |
a-f |
98.4 |
b-f |
22.6 |
a-e |
3.41 |
c |
4.85 |
e-h |
2.07 |
fg |
G10 |
Karabük-Ovacık1 |
10.78 |
a |
111.0 |
b-e |
341.2 |
fgh |
555.5 |
ef |
105.2 |
a |
23.2 |
ab |
3.57 |
a |
5.25 |
b-g |
2.17 |
c-f |
G11 |
Kastamonu-Center1 |
8.65 |
gh |
110.0 |
c-f |
343.5 |
fgh |
564.5 |
b-f |
103.7 |
abc |
22.6 |
a-e |
3.50 |
abc |
4.97 |
d-h |
2.16 |
c-f |
G12 |
Sinop-Dikmen1 |
10.10 |
a-d |
101.6 |
g-j |
363.5 |
a-e |
587.4 |
abc |
96.9 |
def |
21.4 |
e |
3.43 |
bc |
5.48 |
bcd |
2.15 |
c-g |
G13 |
Sinop-Erfelek1 |
10.03 |
a-d |
119.4 |
a |
339.5 |
gh |
563.1 |
def |
103.7 |
abc |
22.9 |
a-d |
3.53 |
abc |
5.55 |
bc |
2.20 |
b-f |
G14 |
Sinop-Erfelek1 |
9.76 |
a-f |
111.1 |
b-e |
342.0 |
fgh |
560.2 |
def |
105.0 |
ab |
21.6 |
de |
3.52 |
abc |
6.13 |
a |
2.36 |
a |
G15 |
Samsun-Vezirköprü1 |
10.25 |
abc |
109.7 |
c-f |
349.0 |
c-h |
577.0 |
a-e |
100.3 |
a-f |
22.7 |
a-e |
3.52 |
abc |
5.36 |
b-f |
2.34 |
ab |
G16 |
Samsun-Vezirköprü1 |
8.74 |
gfh |
103.5 |
e-j |
341.0 |
fgh |
553.0 |
f |
106.6 |
a |
21.8 |
b-e |
3.50 |
abc |
4.75 |
gh |
2.11 |
efg |
G17 |
Samsun-Asarcık1 |
9.53 |
b-h |
108.5 |
c-g |
352.0 |
c-h |
572.0 |
a-f |
101.1 |
a-f |
22.5 |
a-e |
3.48 |
abc |
5.50 |
bcd |
2.23 |
a-e |
G18 |
Samsun-Çarşamba1 |
9.80 |
a-e |
107.8 |
d-g |
343.0 |
fgh |
565.0 |
b-f |
103.3 |
a-d |
21.6 |
cde |
3.53 |
abc |
5.38 |
b-e |
2.23 |
a-e |
G19 |
Samsun-Kavak 1 |
9.44 |
b-h |
118.3 |
ab |
336.3 |
h |
563.4 |
def |
105.1 |
ab |
22.3 |
a-e |
3.54 |
abc |
5.22 |
b-g |
2.27 |
abc |
G20 |
Tokat-Niksar 1 |
8.62 |
gh |
110.2 |
cde |
358.3 |
a-f |
582.5 |
a-d |
98.3 |
c-f |
23.1 |
abc |
3.51 |
abc |
5.48 |
bcd |
2.22 |
a-e |
G21 |
Tokat-Almus 1 |
8.48 |
h |
107.6 |
d-g |
356.3 |
a-g |
574.7 |
a-f |
101.1 |
a-f |
23.3 |
ab |
3.54 |
abc |
4.85 |
e-h |
2.16 |
c-f |
G22 |
Seydişehir2 |
9.11 |
d-h |
116.1 |
abc |
348.3 |
d-h |
564.0 |
c-f |
102.9 |
a-d |
22.7 |
a-e |
3.54 |
abc |
5.08 |
c-h |
2.10 |
efg |
G23 |
Y3302 |
9.31 |
c-h |
102.2 |
f-j |
365.8 |
a-d |
587.0 |
abc |
96.0 |
f |
23.0 |
a-d |
3.47 |
abc |
5.65 |
ab |
2.15 |
c-g |
G24 |
Y17792 |
10.40 |
ab |
97.8 |
h-k |
371.9 |
a |
587.8 |
ab |
95.5 |
f |
22.2 |
a-e |
3.47 |
abc |
5.27 |
b-g |
2.13 |
d-g |
G25 |
Faikbey2 |
9.51 |
c-g |
110.2 |
cde |
349.0 |
c-h |
561.1 |
def |
103.0 |
a-d |
22.8 |
a-e |
3.59 |
abc |
4.82 |
fgh |
2.02 |
g |
Mean |
9.62 |
107.1 |
352.5 |
570.9 |
101.3 |
22.6 |
3.51 |
5.24 |
2.17 |
||||||||||
First Year |
9.83 |
A |
93.8 |
B |
379.5 |
A |
576.8 |
A |
96.3 |
B |
23.7 |
A |
3.04 |
B |
5.49 |
A |
2.29 |
A |
|
Second Year |
9.41 |
B |
120.4 |
A |
325.5 |
B |
565.0 |
B |
106.3 |
A |
21.5 |
B |
3.98 |
A |
4.98 |
B |
2.05 |
B |
1 –local cultivar, 2 –check, Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Figure 1. Mean values of hay yield and protein content of 25 oat genotypes tested across three locations in two years.
Table 3. Minimum, maximum and mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years.
Cuadro 3. Valores mínimos, máximos y medios de genotipos de Y, CP, ADF, NDF, RFV, K, P, Ca y Mg de 25 genotipos de avena analizados en tres ubicaciones en dos años.
Location |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
|
Min |
6.67 |
106.6 |
315.5 |
529.8 |
97.0 |
20.2 |
3.39 |
4.31 |
1.97 |
|
Amasya |
Max |
9.69 |
136.1 |
363.8 |
585.6 |
113.3 |
24.9 |
3.67 |
6.74 |
2.39 |
Mean |
8.35 b |
119.3 a |
340.8 c |
556.4 b |
105.1 a |
23.0 b |
3.52 b |
5.82 a |
2.17 ab |
|
Min |
8.67 |
66.0 |
334.6 |
556.3 |
86.7 |
22.3 |
3.14 |
3.86 |
1.91 |
|
Bafra |
Max |
11.51 |
105.3 |
393.8 |
628.5 |
106.5 |
25.9 |
3.47 |
5.11 |
2.44 |
Mean |
10.26 a |
86.2 c |
364.9 a |
592.7 a |
96.0 b |
24.2 a |
3.31 c |
4.56 c |
2.13 b |
|
Min |
7.77 |
99.9 |
328.8 |
536.5 |
93.3 |
18.7 |
3.53 |
4.48 |
2.01 |
|
Samsun |
Max |
12.27 |
132.5 |
379.5 |
593.4 |
111.6 |
22.5 |
3.86 |
6.59 |
2.51 |
Mean |
10.24 a |
115.9 b |
351.7 b |
563.6 b |
102.8 a |
20.6 c |
3.72 a |
5.34 b |
2.21 a |
Y= yield. CP= protein crude. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Table 4. Mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years.
Genotype /Code |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
||||||||||
G1 |
Düzce-Center1 |
9.55 |
b-g |
95.9 |
jk |
371.2 |
ab |
588.7 |
a |
96.2 |
ef |
22.4 |
a-e |
3.54 |
abc |
5.29 |
b-f |
2.07 |
fg |
G2 |
Düzce-Center1 |
9.73 |
b-f |
107.8 |
d-g |
346.0 |
e-h |
557.3 |
ef |
104.3 |
abc |
22.7 |
a-e |
3.46 |
abc |
4.55 |
h |
2.25 |
a-d |
G3 |
Düzce-Gümüşova 1 |
8.98 |
e-h |
97.3 |
ijk |
364.1 |
a-d |
583.2 |
a-d |
97.9 |
c-f |
23.6 |
a |
3.55 |
ab |
5.39 |
b-e |
2.10 |
efg |
G4 |
Bolu-Göynük 1 |
9.80 |
a-e |
109.1 |
c-g |
349.3 |
c-h |
564.5 |
b-f |
102.8 |
a-e |
22.7 |
a-e |
3.58 |
a |
5.11 |
b-g |
2.15 |
c-g |
G5 |
Bolu-Yeniçağa1 |
10.33 |
a-b |
112.2 |
a-d |
352.6 |
c-h |
567.1 |
a-f |
102.1 |
a-f |
23.3 |
ab |
3.50 |
abc |
5.22 |
b-g |
2.17 |
c-f |
G6 |
Zonguldak-Center1 |
10.08 |
a-d |
106.2 |
d-g |
350.9 |
c-h |
569.6 |
a-f |
101.9 |
a-f |
22.6 |
a-e |
3.52 |
abc |
5.49 |
bcd |
2.20 |
b-f |
G7 |
Zonguldak-Ereğli1 |
9.46 |
b-h |
105.2 |
d-h |
353.9 |
b-h |
573.8 |
a-f |
100.8 |
a-f |
22.8 |
a-e |
3.53 |
abc |
4.96 |
d-h |
2.16 |
c-f |
G8 |
Zonguldak-Çaycuma1 |
10.42 |
ab |
105.1 |
d-i |
356.9 |
a-g |
574.2 |
a-f |
100.3 |
a-f |
22.7 |
a-e |
3.50 |
abc |
5.39 |
b-e |
2.12 |
d-g |
G9 |
Zonguldak-Gökçebey1 |
9.61 |
c-g |
93.7 |
k |
366.1 |
abc |
576.1 |
a-f |
98.4 |
b-f |
22.6 |
a-e |
3.41 |
c |
4.85 |
e-h |
2.07 |
fg |
G10 |
Karabük-Ovacık1 |
10.78 |
a |
111.0 |
b-e |
341.2 |
fgh |
555.5 |
ef |
105.2 |
a |
23.2 |
ab |
3.57 |
a |
5.25 |
b-g |
2.17 |
c-f |
G11 |
Kastamonu-Center1 |
8.65 |
gh |
110.0 |
c-f |
343.5 |
fgh |
564.5 |
b-f |
103.7 |
abc |
22.6 |
a-e |
3.50 |
abc |
4.97 |
d-h |
2.16 |
c-f |
G12 |
Sinop-Dikmen1 |
10.10 |
a-d |
101.6 |
g-j |
363.5 |
a-e |
587.4 |
abc |
96.9 |
def |
21.4 |
e |
3.43 |
bc |
5.48 |
bcd |
2.15 |
c-g |
G13 |
Sinop-Erfelek1 |
10.03 |
a-d |
119.4 |
a |
339.5 |
gh |
563.1 |
def |
103.7 |
abc |
22.9 |
a-d |
3.53 |
abc |
5.55 |
bc |
2.20 |
b-f |
G14 |
Sinop-Erfelek1 |
9.76 |
a-f |
111.1 |
b-e |
342.0 |
fgh |
560.2 |
def |
105.0 |
ab |
21.6 |
de |
3.52 |
abc |
6.13 |
a |
2.36 |
a |
G15 |
Samsun-Vezirköprü1 |
10.25 |
abc |
109.7 |
c-f |
349.0 |
c-h |
577.0 |
a-e |
100.3 |
a-f |
22.7 |
a-e |
3.52 |
abc |
5.36 |
b-f |
2.34 |
ab |
G16 |
Samsun-Vezirköprü1 |
8.74 |
gfh |
103.5 |
e-j |
341.0 |
fgh |
553.0 |
f |
106.6 |
a |
21.8 |
b-e |
3.50 |
abc |
4.75 |
gh |
2.11 |
efg |
G17 |
Samsun-Asarcık1 |
9.53 |
b-h |
108.5 |
c-g |
352.0 |
c-h |
572.0 |
a-f |
101.1 |
a-f |
22.5 |
a-e |
3.48 |
abc |
5.50 |
bcd |
2.23 |
a-e |
G18 |
Samsun-Çarşamba1 |
9.80 |
a-e |
107.8 |
d-g |
343.0 |
fgh |
565.0 |
b-f |
103.3 |
a-d |
21.6 |
cde |
3.53 |
abc |
5.38 |
b-e |
2.23 |
a-e |
G19 |
Samsun-Kavak 1 |
9.44 |
b-h |
118.3 |
ab |
336.3 |
h |
563.4 |
def |
105.1 |
ab |
22.3 |
a-e |
3.54 |
abc |
5.22 |
b-g |
2.27 |
abc |
G20 |
Tokat-Niksar 1 |
8.62 |
gh |
110.2 |
cde |
358.3 |
a-f |
582.5 |
a-d |
98.3 |
c-f |
23.1 |
abc |
3.51 |
abc |
5.48 |
bcd |
2.22 |
a-e |
G21 |
Tokat-Almus 1 |
8.48 |
h |
107.6 |
d-g |
356.3 |
a-g |
574.7 |
a-f |
101.1 |
a-f |
23.3 |
ab |
3.54 |
abc |
4.85 |
e-h |
2.16 |
c-f |
G22 |
Seydişehir2 |
9.11 |
d-h |
116.1 |
abc |
348.3 |
d-h |
564.0 |
c-f |
102.9 |
a-d |
22.7 |
a-e |
3.54 |
abc |
5.08 |
c-h |
2.10 |
efg |
G23 |
Y3302 |
9.31 |
c-h |
102.2 |
f-j |
365.8 |
a-d |
587.0 |
abc |
96.0 |
f |
23.0 |
a-d |
3.47 |
abc |
5.65 |
ab |
2.15 |
c-g |
G24 |
Y17792 |
10.40 |
ab |
97.8 |
h-k |
371.9 |
a |
587.8 |
ab |
95.5 |
f |
22.2 |
a-e |
3.47 |
abc |
5.27 |
b-g |
2.13 |
d-g |
G25 |
Faikbey2 |
9.51 |
c-g |
110.2 |
cde |
349.0 |
c-h |
561.1 |
def |
103.0 |
a-d |
22.8 |
a-e |
3.59 |
abc |
4.82 |
fgh |
2.02 |
g |
Mean |
9.62 |
107.1 |
352.5 |
570.9 |
101.3 |
22.6 |
3.51 |
5.24 |
2.17 |
||||||||||
First Year |
9.83 |
A |
93.8 |
B |
379.5 |
A |
576.8 |
A |
96.3 |
B |
23.7 |
A |
3.04 |
B |
5.49 |
A |
2.29 |
A |
|
Second Year |
9.41 |
B |
120.4 |
A |
325.5 |
B |
565.0 |
B |
106.3 |
A |
21.5 |
B |
3.98 |
A |
4.98 |
B |
2.05 |
B |
1 –local cultivar, 2 –check, Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Figure 1. Mean values of hay yield and protein content of 25 oat genotypes tested across three locations in two years.
Table 4. Mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years.
Cuadro 4. Valores de la media de Y, CP, ADF, NDF, RFV, K, P, Ca y Mg de 25 genotipos de avena analizados en tres ubicaciones en dos años.
Genotype /Code |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
||||||||||
G1 |
Düzce-Center1 |
9.55 |
b-g |
95.9 |
jk |
371.2 |
ab |
588.7 |
a |
96.2 |
ef |
22.4 |
a-e |
3.54 |
abc |
5.29 |
b-f |
2.07 |
fg |
G2 |
Düzce-Center1 |
9.73 |
b-f |
107.8 |
d-g |
346.0 |
e-h |
557.3 |
ef |
104.3 |
abc |
22.7 |
a-e |
3.46 |
abc |
4.55 |
h |
2.25 |
a-d |
G3 |
Düzce-Gümüşova 1 |
8.98 |
e-h |
97.3 |
ijk |
364.1 |
a-d |
583.2 |
a-d |
97.9 |
c-f |
23.6 |
a |
3.55 |
ab |
5.39 |
b-e |
2.10 |
efg |
G4 |
Bolu-Göynük 1 |
9.80 |
a-e |
109.1 |
c-g |
349.3 |
c-h |
564.5 |
b-f |
102.8 |
a-e |
22.7 |
a-e |
3.58 |
a |
5.11 |
b-g |
2.15 |
c-g |
G5 |
Bolu-Yeniçağa1 |
10.33 |
a-b |
112.2 |
a-d |
352.6 |
c-h |
567.1 |
a-f |
102.1 |
a-f |
23.3 |
ab |
3.50 |
abc |
5.22 |
b-g |
2.17 |
c-f |
G6 |
Zonguldak-Center1 |
10.08 |
a-d |
106.2 |
d-g |
350.9 |
c-h |
569.6 |
a-f |
101.9 |
a-f |
22.6 |
a-e |
3.52 |
abc |
5.49 |
bcd |
2.20 |
b-f |
G7 |
Zonguldak-Ereğli1 |
9.46 |
b-h |
105.2 |
d-h |
353.9 |
b-h |
573.8 |
a-f |
100.8 |
a-f |
22.8 |
a-e |
3.53 |
abc |
4.96 |
d-h |
2.16 |
c-f |
G8 |
Zonguldak-Çaycuma1 |
10.42 |
ab |
105.1 |
d-i |
356.9 |
a-g |
574.2 |
a-f |
100.3 |
a-f |
22.7 |
a-e |
3.50 |
abc |
5.39 |
b-e |
2.12 |
d-g |
G9 |
Zonguldak-Gökçebey1 |
9.61 |
c-g |
93.7 |
k |
366.1 |
abc |
576.1 |
a-f |
98.4 |
b-f |
22.6 |
a-e |
3.41 |
c |
4.85 |
e-h |
2.07 |
fg |
G10 |
Karabük-Ovacık1 |
10.78 |
a |
111.0 |
b-e |
341.2 |
fgh |
555.5 |
ef |
105.2 |
a |
23.2 |
ab |
3.57 |
a |
5.25 |
b-g |
2.17 |
c-f |
G11 |
Kastamonu-Center1 |
8.65 |
gh |
110.0 |
c-f |
343.5 |
fgh |
564.5 |
b-f |
103.7 |
abc |
22.6 |
a-e |
3.50 |
abc |
4.97 |
d-h |
2.16 |
c-f |
G12 |
Sinop-Dikmen1 |
10.10 |
a-d |
101.6 |
g-j |
363.5 |
a-e |
587.4 |
abc |
96.9 |
def |
21.4 |
e |
3.43 |
bc |
5.48 |
bcd |
2.15 |
c-g |
G13 |
Sinop-Erfelek1 |
10.03 |
a-d |
119.4 |
a |
339.5 |
gh |
563.1 |
def |
103.7 |
abc |
22.9 |
a-d |
3.53 |
abc |
5.55 |
bc |
2.20 |
b-f |
G14 |
Sinop-Erfelek1 |
9.76 |
a-f |
111.1 |
b-e |
342.0 |
fgh |
560.2 |
def |
105.0 |
ab |
21.6 |
de |
3.52 |
abc |
6.13 |
a |
2.36 |
a |
G15 |
Samsun-Vezirköprü1 |
10.25 |
abc |
109.7 |
c-f |
349.0 |
c-h |
577.0 |
a-e |
100.3 |
a-f |
22.7 |
a-e |
3.52 |
abc |
5.36 |
b-f |
2.34 |
ab |
G16 |
Samsun-Vezirköprü1 |
8.74 |
gfh |
103.5 |
e-j |
341.0 |
fgh |
553.0 |
f |
106.6 |
a |
21.8 |
b-e |
3.50 |
abc |
4.75 |
gh |
2.11 |
efg |
G17 |
Samsun-Asarcık1 |
9.53 |
b-h |
108.5 |
c-g |
352.0 |
c-h |
572.0 |
a-f |
101.1 |
a-f |
22.5 |
a-e |
3.48 |
abc |
5.50 |
bcd |
2.23 |
a-e |
G18 |
Samsun-Çarşamba1 |
9.80 |
a-e |
107.8 |
d-g |
343.0 |
fgh |
565.0 |
b-f |
103.3 |
a-d |
21.6 |
cde |
3.53 |
abc |
5.38 |
b-e |
2.23 |
a-e |
G19 |
Samsun-Kavak 1 |
9.44 |
b-h |
118.3 |
ab |
336.3 |
h |
563.4 |
def |
105.1 |
ab |
22.3 |
a-e |
3.54 |
abc |
5.22 |
b-g |
2.27 |
abc |
G20 |
Tokat-Niksar 1 |
8.62 |
gh |
110.2 |
cde |
358.3 |
a-f |
582.5 |
a-d |
98.3 |
c-f |
23.1 |
abc |
3.51 |
abc |
5.48 |
bcd |
2.22 |
a-e |
G21 |
Tokat-Almus 1 |
8.48 |
h |
107.6 |
d-g |
356.3 |
a-g |
574.7 |
a-f |
101.1 |
a-f |
23.3 |
ab |
3.54 |
abc |
4.85 |
e-h |
2.16 |
c-f |
G22 |
Seydişehir2 |
9.11 |
d-h |
116.1 |
abc |
348.3 |
d-h |
564.0 |
c-f |
102.9 |
a-d |
22.7 |
a-e |
3.54 |
abc |
5.08 |
c-h |
2.10 |
efg |
G23 |
Y3302 |
9.31 |
c-h |
102.2 |
f-j |
365.8 |
a-d |
587.0 |
abc |
96.0 |
f |
23.0 |
a-d |
3.47 |
abc |
5.65 |
ab |
2.15 |
c-g |
G24 |
Y17792 |
10.40 |
ab |
97.8 |
h-k |
371.9 |
a |
587.8 |
ab |
95.5 |
f |
22.2 |
a-e |
3.47 |
abc |
5.27 |
b-g |
2.13 |
d-g |
G25 |
Faikbey2 |
9.51 |
c-g |
110.2 |
cde |
349.0 |
c-h |
561.1 |
def |
103.0 |
a-d |
22.8 |
a-e |
3.59 |
abc |
4.82 |
fgh |
2.02 |
g |
Mean |
9.62 |
107.1 |
352.5 |
570.9 |
101.3 |
22.6 |
3.51 |
5.24 |
2.17 |
||||||||||
First Year |
9.83 |
A |
93.8 |
B |
379.5 |
A |
576.8 |
A |
96.3 |
B |
23.7 |
A |
3.04 |
B |
5.49 |
A |
2.29 |
A |
|
Second Year |
9.41 |
B |
120.4 |
A |
325.5 |
B |
565.0 |
B |
106.3 |
A |
21.5 |
B |
3.98 |
A |
4.98 |
B |
2.05 |
B |
1 –local cultivar, 2 –check, Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Figure 1. Mean values of hay yield and protein content of 25 oat genotypes tested across three locations in two years.
1 –local cultivar, 2 –check, Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Table 4. Mean values of Y, CP, ADF, NDF, RFV, K, P, Ca and Mg of 25 oat genotypes tested across three locations in two years (Continuation).
Cuadro 4. Valores de la media de Y, CP, ADF, NDF, RFV, K, P, Ca y Mg de 25 genotipos de avena analizados en tres ubicaciones en dos años (Continuación).
Genotype /Code |
Y (t·ha-1) |
CP (g·kg-1) |
ADF (g·kg-1) |
NDF (g·kg-1) |
RFV (g·kg-1) |
K (g·kg-1) |
P (g·kg-1) |
Ca (g·kg-1) |
Mg (g·kg-1) |
G18 |
Samsun-Çarşamba1 |
9.80 |
a-e |
107.8 |
d-g |
343.0 |
fgh |
565.0 |
b-f |
103.3 |
a-d |
21.6 |
cde |
3.53 |
abc |
5.38 |
b-e |
2.23 |
a-e |
G19 |
Samsun-Kavak 1 |
9.44 |
b-h |
118.3 |
ab |
336.3 |
h |
563.4 |
def |
105.1 |
ab |
22.3 |
a-e |
3.54 |
abc |
5.22 |
b-g |
2.27 |
abc |
G20 |
Tokat-Niksar 1 |
8.62 |
gh |
110.2 |
cde |
358.3 |
a-f |
582.5 |
a-d |
98.3 |
c-f |
23.1 |
abc |
3.51 |
abc |
5.48 |
bcd |
2.22 |
a-e |
G21 |
Tokat-Almus 1 |
8.48 |
h |
107.6 |
d-g |
356.3 |
a-g |
574.7 |
a-f |
101.1 |
a-f |
23.3 |
ab |
3.54 |
abc |
4.85 |
e-h |
2.16 |
c-f |
G22 |
Seydişehir2 |
9.11 |
d-h |
116.1 |
abc |
348.3 |
d-h |
564.0 |
c-f |
102.9 |
a-d |
22.7 |
a-e |
3.54 |
abc |
5.08 |
c-h |
2.10 |
efg |
G23 |
Y3302 |
9.31 |
c-h |
102.2 |
f-j |
365.8 |
a-d |
587.0 |
abc |
96.0 |
f |
23.0 |
a-d |
3.47 |
abc |
5.65 |
ab |
2.15 |
c-g |
G24 |
Y17792 |
10.40 |
ab |
97.8 |
h-k |
371.9 |
a |
587.8 |
ab |
95.5 |
f |
22.2 |
a-e |
3.47 |
abc |
5.27 |
b-g |
2.13 |
d-g |
G25 |
Faikbey2 |
9.51 |
c-g |
110.2 |
cde |
349.0 |
c-h |
561.1 |
def |
103.0 |
a-d |
22.8 |
a-e |
3.59 |
abc |
4.82 |
fgh |
2.02 |
g |
Mean |
9.62 |
107.1 |
352.5 |
570.9 |
101.3 |
22.6 |
3.51 |
5.24 |
2.17 |
||||||||||
First Year |
9.83 |
A |
93.8 |
B |
379.5 |
A |
576.8 |
A |
96.3 |
B |
23.7 |
A |
3.04 |
B |
5.49 |
A |
2.29 |
A |
|
Second Year |
9.41 |
B |
120.4 |
A |
325.5 |
B |
565.0 |
B |
106.3 |
A |
21.5 |
B |
3.98 |
A |
4.98 |
B |
2.05 |
B |
1 –local cultivar, 2 –check, Y= yield. CP= protein content. ADF= acid detergent fibre. NDF= neutral detergent fibre. RFV= relative feed value. K= potassium. P= phosphorus. Ca= calcium. Mg= magnesium.
Figure 1. Mean values of hay yield of 25 oat genotypes tested across three locations in two years.
Figura 1. Valores de la media de rendimiento de heno de 25 genotipos de avena analizados en tres ubicaciones en dos años.